A importância de canais iônicos para a ação de fármacos causadores de dependência

Autores

  • Saulo Rios Mariz
  • Bagnólia Araújo da Silva

Palavras-chave:

canais iônicos, dependência química, mecanismos de ação, psicotrópicos

Resumo

Este trabalho apresenta uma revisão sobre os mecanismos de ação molecular em receptores ionotrópicos dos principais psicofármacos causadores de farmacodependência e tem como objetivo apresentar uma fonte condensada e atualizada de informações científicas que colaborem com o trabalho de profissionais envolvidos na prevenção ao uso indevido de drogas e no tratamento interdisciplinar e multimodal da farmacodependência.

Downloads

Não há dados estatísticos.

Referências

Moreau RLM. Fármacos e drogas que causam dependência. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.217-25.

Garrett RH, Grisham CM. Molecular aspects of cell biology. Orlando: Sounders College Publishing; 1995.

Davies M. The role of GABA A receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003; 28(4):263-74.

Fleming M, Mihic SJ, Harris RA. Etanol. ln: Hardman JG, Limbird LE, Gilman AG. Goodman & Gilman as bases farmacológicas da terapêutica. 10a. ed. New York: McGraw Hill; 2003. p.325-37.

Sanna E, Harris RA. Recent developments in alcoholism: neuronal íon channels. Recent Dev Alcohol. 2003; 11:169-86.

Rhang HP, Dave MM, Ritter JM. Aminoácidos transmissores. ln: Farmacologia. 4a. ed. Rio de Janeiro: Guanabara Koogan; 2001. p.392-402.

Ma W, Pancrazio JJ, Andreadis JD, Shatfer KM, Stenger DA, Li BS, et ai. Ethanol blocks cytosolic Ca2+ responses triggered by activation of GABA(A) receptor/CI- channels in cultured proliferating neuroep1thelial cells Neuroscience. 2001. 104(3)913-22.

Scivoletto S, Malbergier A. Etanol. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.272-85.

Grobim AC, Matthews DB, Montoya D, Wilson WA, Morrow AL, Swartzwelder HS. Age-related ditferences in neurosteroid potentiation of muscistimulated 36CI(-) flux following chronic ethanol treatment. Neuroscience. 2001; 105(3):542-7.

Mohri Y, Katsura M, Shuto K, Tsujimura A, lshii R, Ohkuma S. L-type high voltage-gated calcium channels cause an increase in diazepam binding inhibitor mRNA expression after sustained exposure to ethanol in mouse cerebral cortical neurons. Brain Res Mol Brain Res. 2003; 113(1-2):52-6.

N'gouemo P, Morad M. Ethanol withdrawal seizure susceptibility is associated with upregulation of L- and P-type Ca2+ channel currents in rat inferior colliculus neurons. Neuropharmacology. 2003; 45(3):429-37.

Gatch MB. Nitrendipine blocks the nociceptive effects of chronically administered ethanol. Alcohol Clin Exp Res. 2002; 26(8):1181-7.

Krupitsky EM, Burakoy AM, Romanova TN, Grinenko NI, Grinenko AY, Fletcher J, et ai. Attenuation of ketamine effects by nimodipine pretreatment recovering ethanol dependent men: pysychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists. Neuropsychopharmacology. 2001; 25(6):936-47.

Veatch LM, Gonzalez LP. Nifedipine alleviates alterations in hippocampal kindling after repeated ethanol withdrawal. Alcohol Clin Exp Res. 2000; 24(4):484-91.

Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinicai implications. Pharmacol Ther. 2003; 97(1):55-85.

Spanagel R, Zieglgansberger W. Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sei. 1997; 18(12):54-9

Snell LD, Clatfey DJ, Ruth JA, Valenzuela CF, Cardoso R, Wang Z, et ai. Novel structure having antagonist actions at both the glycine of the N-methyl-D-aspartte receptor and neuronal voltage-sensitive sodium channels: biochemical, electrophys1olog1cal, behavioral characterization. J Pharmacol Exp Ther. 2000; 292(1):215-27.

Konu O, Kane JK, Barrett T, Vawter MP, Chang R, Ma JZ, et ai. Region-specific transcriptional response to chronic nicotine in brain. Brain Res. 2001; 909 (1-2):194-203.

Galvão JF, Moreau RLM. Tabaco. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.297-305.

Thornton MGA, Lima IV. Barbitúricos e Benzodiazepínicos. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.258-69.

Jung ME, Lal H, Gatch MB. The discriminative stim_ulus effects of pentylenetetrazol as a model of anx1ety: recent developments. Neurosci Biobehav Rev. 2002; 26(4):429-39.

Tsuda M, Suzuki T, Misawa M. Recovery of decreased seizure threshold for pentylenetetrazole during diazepam withdrawal by NMDA receptor antagonists. Eur J Pharmacol. 1997; 324(1):63-66.

Costa E, Auta J, Grayson DR, Matsumoto K, Pappas GD, Zhang X, et ai. GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs. Neuropharmacology. 2002; 43(6):925-37.

Follesa P, Cagetti E, Mancuso L, Biggio F, Manca A, Maciocco EMF, et ai. lncrease in the expression of GABA(A) receptor alpha(4) subunit gene induced by withdrawal of, but not long-term treatment with, benzodiazepine full or partial agonists. Brain Res Mol Brain Res. 2001; 92(1-2):138-48.

Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma glioma cels. Proc Natl Acad Sei. 1992; 89(9):3825-9.

O'Brien CP. Dependência e uso abusivo de drogas. ln: Hardman JG, Limbird LE, Gilman AG. editors. Goodman & Gilman as bases farmacológicas da terapêutica. 10a. ed. New York: McGraw Hill. 2003; p.465-81.

Chasin AMM, Silva ES. Estimulantes do Sistema Nervoso Central. ln: Oga S. (org.). Fundamentos de toxicologia. 2a.ed. São Paulo: Atheneu; 2003. p.239-57.

Cancela LM, Basso AM, Martijena ID, Capriles NR, Molina VAA. Dopaminergic mechanism is involved in the anxiogenic-like response induced by chronic amphetamine treatment: a behavioral and neurochemical study. Brain Res. 2001; 909(1-2): 179-86.

Grimm JW, See RE. Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology. 2000; 22(5):473-79.

Zhang XF, Hu XT, White FJ. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus neurons. J Neurosci. 1998; 18(1):488-98.

Zhang XF, Cooper DC, White FJ. Repeated cocaine treatment decreases whole-cell calcium currents in rat nucleus accumbens neurons. J Pharmacol Exp Ther. 2002; 301(3):1119-25.

Oliveira GH. Opiáceos e Opióides. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.227-38.

Jimenez-Lerma JM, Landabaso M, lraurgi L, Calle R, Sanz J, Gutierrez-Fraile M. Nimodipine in opiate detoxification: a controlled triai. Addiction. 2002; 97(7):819-24.

Blackburn-Munro G, Brown CH, Neumann ID, Landgraf R, Russel. Verapamil prevents withdrawal excitation of oxytocin neurones in morphine­-dependent rats. Neuropharmacology. 2000; 39(9):1596-607.

Dogrul A, Zagli U, Tulunay FC. The role of T-type calcium channels in morphine analgesia, development of antinociceptive tolerance and dependence to morphine, and morphine abstinence syndrome. Life Sei. 2002; 71(6):725-34.

Wisthler JL, Chuang HH, Cau P, Jan LY, Vonzastrov M. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron. 1999; 23(4):737-46.

Taylor DA, Fleming WW. Unifying perspectives of the mechanisms underlying the development of tolerance and physical dependence to opioids. J Pharmacol Exp Ther. 2001; 297(1):11-8.

Connor M, Borgland SL, Christie MJ. Continued morphine modulation of calcium channel currents acutely isolated locus coeruleus neurons from morphine-dependent rats. Br J Pharmacol. 1999; 128(7):1561-9.

Chen X, Marrero HG, Murphy R, Lin YJ, Freedman J. Altered gating of opiate receptor-modulated K+ channels on amygdala neurons of morphine­-dependent rats. PNAS. 2000; 97(26):14692-6.

Campbell VC, Dewey WL, Welch SP. Comparison of [(3)H] Glyburide binding with opiate analgesic tolerance, and dependence in ICRand Swiss-Webster mice. J Pharmacol Exp Ther. 2000; 295(3):1112-9.

Martinez PJ, Laorden ML, Cerezo M, Martinez-Pinero MG, Milanes MV. Characterization of the signal transduction pathways mediat morphine withdrawal­ stimulated c-fos expression in the hypothalamic nuclei. Eur J Pharmacol. 2001; 430(1):59-68.

Salmanzadeh F, Fathollahi Y, Semnanian S, Shafizadeh M, Kazemnejad A. Dependence on morphine leads to a prominent sharing among the different mechanisms of long-term potentiation in the CA1 region of rat hippocampus. Brain Res. 2003; 963 (1-2).

lngram SL, Vaughan CW, Bagley EE, Connor M, C hristie MJ. Enhanced opioid efficacy in opioid dependence is caused by a altered signal transduction pathway. J Neurosci. 1998; 18(24):10269-76.

Ammon S, Mayer P, Riechert U, Tischmeyer H, Hollt V. Microarray analysis of genes expressed in the frontal córtex of rats chronically treated with morphine and after naloxone precipitated withdrawal. Brain Res Mol Brain. 2003; 112(1-2):113-25.

Cazenave SOS. Alucinógenos. ln: Oga S. Fundamentos de toxicologia. 2a. ed. São Paulo: Atheneu; 2003. p.319-32.

Downloads

Publicado

2006-04-30

Como Citar

Mariz, S. R., & Silva, B. A. da. (2006). A importância de canais iônicos para a ação de fármacos causadores de dependência. Revista De Ciências Médicas, 15(2). Recuperado de https://puccampinas.emnuvens.com.br/cienciasmedicas/article/view/1124

Edição

Seção

Revisão