Predictive capacity of indicators of adiposity in the metabolic syndrome in elderly individuals

Autores

  • Keila Bacelar Duarte de MORAIS Universidade Federal de Viçosa
  • Karina Oliveira MARTINHO Universidade Federal de Viçosa
  • Fernanda Silva FRANCO Universidade Federal de Viçosa
  • Milene Cristine PESSOA Universidade Federal de Minas Gerais
  • Andréia Queiroz RIBEIRO Universidade Federal de Viçosa

Palavras-chave:

Aging, Cutoff Points, Elderly individuals, Metabolic Syndrome, Obesity

Resumo

Objective
To evaluate the predictive ability of adiposity indicators as MetS predictors in elderly individuals.

Methods
Cross-sectional study enrolled in the Estratégia Saúde da Família (Family Health Strategy). Anthropometric measurements were measured. Body Mass Index, Waist-Hip Ratio, Waist-Height Ratio, Conicity Index and Body Adiposity Index were calculated. Blood was collected and resting blood pressure was measured. MetS was classified according to the harmonizing criteria. The predictive ability of anthropometric variables was evaluated using Receiver Operating Characteristic curves.

Results
Regarding male individuals, our research indicates that the BMI, Waist-Height Ratio and Waist Hip Ratio are better predictors and they are equivalent to each other. As for female individuals, results show that the Body Mass Index and Waist-Height Ratio are better predictors and equivalent to each other.

Conclusion
Waist-Height Ratio and Body Mass Index are good MetS predictors for elderly individuals, especially among men. More research in this area is important. Comitê de Ética em Pesquisa com Seres Humanos da Universidade Federal de Viçosa. (Viçosa University Ethics Committee in Research with Human Beings) (nº 039/2011).

 

Referências

Martinho KO, Dantas EHM, Longo GZ, Ribeiro AQ, Pereira ET, Franco FS, et al. Comparison of functional autonomy with associated sociodemographic factors, lifestyle, chronic diseases (CD) and neuropsychiatric factors in elderly patients with or without the metabolic syndrome (MS). Arch Gerontol Geriatr. 2013;57(2):151-5. http://dx.doi.org/10.1016/j.archger.2013.04.005

Hu H, Kurotani K, Sasaki N, Murakami T, Shimizu C, Shimizu M, et al. Optimal waist circumference cut-off points and ability of different metabolic syndrome criteria for predicting diabetes in Japanese men and women: Japan epidemiology collaboration on occupational health study. BMC Public Health. 2016;16(1):220. http://dx.doi.org/10.1186/s12889-016-2856-9

Chuang T-J, Huang C-L, Lee C-H, Hsieh C-H, Hung Y-J, Hung C-F, et al. The differences of metabolic syndrome in elderly subgroups: A special focus on young-old, old-old and oldest old. Arch Gerontol Geriatr. 2016;65:92-7. http://dx.doi.org/10.1016/j.archger.2016.03.008

Gharipour M, Sadeghi M, Dianatkhah M, Bidmeshgi S, Ahmadi A, Tahri M, et al. The cut-off values of anthropometric indices for identifying subjects at risk for metabolic syndrome in Iranian elderly men. J Obes. 2014;2014:6. http://dx.doi.org/10.1155%2F2014%2F907149

Corrêa MM, Thumé E, De Oliveira ERA, Tomasi E. Performance of the waist-to-height ratio in identifying obesity and predicting non-communicable diseases in the elderly population: A systematic literature review. Arch Gerontol Geriatr. 2016;65:174-82. http://dx.doi.org/10.1016/j.archger.2016.03.021

Macias N, Quezada AD, Flores M, Valencia ME, Denova-Gutiérrez E, Quiterio-Trenado M, et al. Accuracy of body fat percent and adiposity indicators cut off values to detect metabolic risk factors in a sample of Mexican adults. BMC Public Health. 2014;14(1):341. http://dx.doi.org/10.1186/1471-2458-14-341

Santos PCM, Ferreira ALL, Mori RMSC. Frequência da Síndrome Metabólica em idosos cadastrados no Programa Saúde do Idoso de uma Unidade Municipal de Saúde de Belém-PA. Rev Assoc Bras Nutr. 2017 [acesso 2017 mar 3];8(1):75-81. Disponível em: https://rasbran.emnuvens.com.br/rasbran/article/view/338/162

Delvarianzadeh M, Abbasian M, Khosravi F, Ebrahimi H, Ebrahimi MH, Fazli M. Appropriate anthropometric indices of obesity and overweight for diagnosis of metabolic syndrome and its relationship with oxidative stress. Diabetes Metab Syndr: Clin Res Rev. 2017;11:S907-S11.

Wang H, Liu A, Zhao T, Gong X, Pang T, Zhou Y, et al. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: A prospective, longitudinal study. BMJ Open. 2017;7(9):e016062. http://dx.doi.org/10.1136/bmjopen-2017-016062

Oliveira CC, Costa ED, Roriz AKC, Ramos LB, Gomes Neto M. Predictors of Metabolic Syndrome in the elderly: A review. Int J Cardiol Sci. 2017;30(4):343-53. http://dx.doi.org/10.5935/2359-4802.20170059

Oliveira CC, Roriz AKC, Ramos LB, Neto MG. Indicators of adiposity predictors of Metabolic Syndrome in the elderly. Ann Nutr Metab. 2017 [cited 2017 Mar 25];70(1):9-15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28103600?dopt=Abstract

Haun DR, Pitanga FJG, lessa I. Razão cintura/estatura comparado a outros indicadores antropomé-tricos de obesidade como preditor de risco coronariano elevado. Rev Assoc Med Bras. 2009;55(6):705-11. http://dx.doi.org/10.1590/S0104-42302009000

Fogal AS, Ribeiro AQ, Priori SE, Franceschini SCC. Prevalência de síndrome metabólica em idosos: uma revisão sistemática. Rev Assoc Bras Nutr. 2014 [acesso 2017 abr 8];6(1):29-35. Disponível em: https://rasbran.emnuvens.com.br/rasbran/article/viewFile/174/126

World Health Organization. Physical status: The use and interpretation of anthropometry: Report of a WHO Expert Committee. Geneva: World Health Organization; 1995 [cited 2017 Apr. 8]. Available from: http://www.who.int/iris/handle/10665/37003

World Health Organization. Obesity: Preventing and managing the global epidemic. Report of the WHO Consultation on Obesity. Geneva: WHO; 1998.

Lipschitz DA. Screening for nutritional status in the elderly. Prim Care. 1994 [cited 2017 May 17];21(1):55. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8197257

Brasil. Sociedade Brasileira de Cardiologia. VII Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016 [acesso 2017 maio 29];107(3).Disponível em: http://publicacoes.cardiol.br/2014/diretrizes/2016/05_HIPERTENSAO_ARTERIAL.pdf

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-5. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644

Saad MAN, Cardoso GP, Martins WA, Velarde LGC, Cruz Filho RA. Prevalence of Metabolic Syndrome in elderly and agreement among four diagnostic criteria. Arq Bras Cardiol. 2014;102(3):263-9. http://dx.doi.org/10.5935%2Fabc.20140013

Chu FL, Hsu CH, Jeng C. Low predictability of anthropometric indicators of obesity in metabolic syndrome risks among elderly women. Arch Gerontol Geriatr. 2012;55(3):718-23. http://dx.doi.org/10.1016/j.archger.2012.02.005

Hsieh SD, Yoshinaga H. Waist/Height Ratio as a simple and useful predictor of coronary heart disease risk factors in women. Intern Med. 1995;34(12):1147-52. http://dx.doi.org/10.2169/internalmedicine.34.1147

Paula HAA, Ribeiro RCL, Rosado LEFPL, Pereira RSF, Franceschini SCC. Comparação de diferentes critérios de definição para diagnóstico de síndrome metabólica em idosas. Arq Bras Cardiol. 2010;95(3):346-53. http://dx.doi.org/10.1590/S0066-782X2010005000100

Eshtiaghi R, Esteghamati A, Nakhjavani M. Menopause is an independent predictor of metabolic syndrome

in Iranian women. Maturitas. 2010;65(3):262-6. http://dx.doi.org/10.1016/j.maturitas.2009.11.004

Wang F, Wu S, Song Y, Tang X, Marshall R, Liang M, et al. Waist circumference, body mass index and waist to hip ratio for prediction of the metabolic syndrome in Chinese. Nutr Metab Cardiovasc Dis. 2009;19(8):542-7. http://dx.doi.org/10.1016/j.numecd.2008.11.006

Organización Panamericana de la Salud. División de Promoción y Protección de la Salud. Encuesta multicentrica salud bienestar y envejecimiento (SABE) en América Latina: informe preliminar / Multicenter survey aging, health and wellbeing

in Latin América and the Caribbean (SABE): preliminary report. Presentado en: Reunión del Comité Asesor de Investigaciónes en Salud 2001 [acceso 2017 jun 2];36. Disponible en: http://www1.paho.org/Spanish/HDP/HDR/CAIS-01-05.PDF

Jahanlou AS, Kouzekanani K. The accuracy of Body Mass Index and Gallagher’s Classification in detecting obesity among Iranians. Iran J Med Sci. 2016 [cited 2017 Jul 18];41(4):288-95. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912647/

Ortiz-Rodríguez MA, Yáñez-Velasco L, Carnevale A, Romero-Hidalgo S, Bernal D, Aguilar-Salinas C, et al. Prevalence of metabolic syndrome among elderly Mexicans. Arq Bras Cardiol. 2017 [cited 2017 Aug 2];73:288-93. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28910752

Almeida RT, Almeida MMG, Araújo TM. Obesidade abdominal e risco cardiovascular: desempenho de indicadores antropométricos em mulheres. Arq Bras Cardiol. 2009;92(5):375-80. http://dx.doi.org/10.1590/S0066-782X2009000500007

Gharakhanlou R, Farzad B, Agha-Alinejad H, Steffen LM, Bayati M. Medidas antropométricas como preditoras de fatores de risco cardiovascular na população urbana do Irã. Arq Bras Cardiol. 2012;98(2):126-35. http://dx.doi.org/10.1590/S0066-782X2012005000007

Vasques ACJ, Rosado LEFPL, Rosado GP, Ribeiro RCL, Franceschini SCC, Geloneze B, et al. Diferentes aferições do diâmetro abdominal sagital e do perímetro da cintura na predição do HOMA-IR. Arq Bras Cardiol. 2009;93(5):511-8. http://dx.doi.org/10.1590/S0066-782X2009005000001

Valdez R, Seidell JC, Ahn YI, Weiss KM. A new index of abdominal adiposity as an indicator of risk for cardiovascular disease: A cross-population study. Int J Obes Relat Metab Disord. 1993 [cited 2017 Aug 7];17(2):77-82. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8384168

Pitanga FJG, Lessa I. Razão cintura-estatura como discriminador do risco coronariano de adultos. Rev Assoc Med Bras. 2006;52(3):157-61. http://dx.doi.org/10.1590/S0104-42302006000300016

López AA, Cespedes ML, Vicente T, Tomas M, Bennasar-Veny M, Tauler P, et al. Body Adiposity Index utilization in a Spanish mediterranean population: Comparison with the Body Mass Index. PLoS One. 2012;7(4):e35281. http://dx.doi.org/10.1371%2Fjournal.pone.0035281

Bennasar Veny M, Lopez Gonzalez AA, Tauler P, Cespedes ML, Vicente Herrero T, Yañez A, et al. Body Adiposity Index and cardiovascular health risk factors in Caucasians: A comparison with the Body Mass Index and others. PLoS One. 2013;8(5):e63999. http://dx.doi.org/10.1371%2 Fjournal.pone.0063999

Downloads

Publicado

08-03-2023

Como Citar

Bacelar Duarte de MORAIS, K. ., Oliveira MARTINHO, K. ., Silva FRANCO, F. ., PESSOA, M. C. ., & Queiroz RIBEIRO, A. (2023). Predictive capacity of indicators of adiposity in the metabolic syndrome in elderly individuals. Revista De Nutrição, 31(2). Recuperado de https://puccampinas.emnuvens.com.br/nutricao/article/view/7644

Edição

Seção

ARTIGOS ORIGINAIS