Desnutrição perinatal e o controle hipotalâmico do comportamento alimentar e do metabolismo do músculo esquelético

Autores

  • Adriano BENTO-SANTOS Universidade Federal de Pernambuco
  • Leonardo dos Reis SILVEIRA Universidade de São Paulo
  • Raul MANHÃES-DE-CASTRO Universidade Federal de Pernambuco
  • Carol Gois LEANDRO Universidade Federal de Pernambuco

Palavras-chave:

Comportamento alimentar, Desnutrição, Doenças metabólicas, Hiperfagia, Hipotálamo, Plasticidade fenotípica, desenvolvimento

Resumo

A deficiência de nutrientes durante os períodos críticos do desenvolvimento tem sido associada com maior risco para desenvolver obesidade e diabetes Mellitus na vida adulta. Um dos mecanismos propostos refere-se à regulação do comportamento alimentar e às alterações do metabolismo energético do músculo esquelético. Recentemente, tem sido proposta a existência de uma comunicação entre o hipotálamo e o músculo esquelético a partir de sinais autonômicos que podem explicar as repercussões da desnutrição perinatal. Assim, esta revisão tem como objetivo discutir as repercussões da desnutrição perinatal sobre o comportamento alimentar e o metabolismo energético muscular e a comunicação existente entre o hipotálamo e o músculo via sinais adrenérgicos. Foram utilizadas as bases de dados MedLine/PubMed, Lilacs e Bireme, com publicações entre 2000 e 2011. Os termos de indexação utilizados foram: feeding behavior, energy metabolism, protein malnutrition, developmental plasticity, skeletal muscle e autonomic nervous system. Concluiu-se que a desnutrição perinatal pode atuar no controle hipotalâmico do comportamento alimentar e no metabolismo energético muscular, e a comunicação hipotálamo-músculo pode favorecer o desenvolvimento de obesidade e comorbidades durante o desenvolvimento.

Referências

Winick M, Rosso P, Brasel JA. Malnutrition and cellular growth in the brain. Bibl Nutr Dieta. 1972; (17):60-8.

Dobbing J. The influence of early nutrition on the development and myelination of the brain. Proc R Soc Lond B Biol Sci. 1964;159(18):503-9. doi: 10.1098/rspb.1964.0016.

Gluckman PD, Hanson MA, Pinal C. The developmental origins of adult disease. Matern Child Nutr. 2005; 1(3):130-41. doi: 10.1111/j.1740-8709.2005.00020.x.

Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976; 295(7):349-53. doi: 10.1056/NEJM197608122950701.

Barker DJ. Fetal origins of cardiovascular disease. Ann Med. 1999; 31(Suppl 1):3-6.

Hales CN, Barker DJ. Type 2 (non-insulindependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992; 35(7):595-601.

Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977; 31(2):91-5.

Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia. 2005; 48(3): 547-52. doi: 10.1007/s00125-005-1669-7.

Barreto Medeiros JM, Cabral Filho JE, De Souza SL, Freitas Silva SR, Mendes Da Silva C, Deiro TC, et al. Early malnourished rats are not affected by anorexia induced by a selective serotonin reuptake inhibitor in adult life. Nutr Neurosci. 2002; 5(3): 211-4.

Falcao-Tebas F, Bento-Santos A, Fidalgo MA, de Almeida MB, dos Santos JA, Lopes de Souza S, et al. Maternal low-protein diet-induced delayed reflex ontogeny is attenuated by moderate physical training during gestation in rats. Br J Nutr. 2012; 107(3):372-7. doi: 10.1017/S0007114511002947.

Wauben IP, Wainwright PE. The influence of neonatal nutrition on behavioral development: a critical appraisal. Nutr Rev. 1999; 57(2):35-44.

Wilson SJ, Ross JJ, Harris AJ. A critical period for formation of secondary myotubes defined by prenatal undernourishment in rats. Development. 1988; 102(4):815-21.

Plagemann A, Waas T, Harder T, Rittel F, Ziska T, Rohde W. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides. 2000; 34(1):1-6. doi: 10.1054/npep.1999.0778.

Orozco-Solis R, Matos RJ, Lopes de Souza S, Grit I, Kaeffer B, Manhaes de Castro R, et al. Perinatal nutrient restriction induces long-lasting alterations in the circadian expression pattern of genes regulating food intake and energy metabolism. Int J Obes (Lond). 2011; 35(7):990-1000. doi: 10.1038/ijo.2010.223.

Orozco-Solis R, Lopes de Souza S, Barbosa Matos RJ, Grit I, Le Bloch J, Nguyen P, et al. Perinatal undernutrition-induced obesity is independent of the developmental programming of feeding. Physiol Behav. 2009; 96(3):481-92. doi: 10.1016/j.physbeh.2008.11.016.

Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, et al. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol. 2003; 177(2):235-41. doi: 10.1677/joe.0.1770235.

Toscano AE, Manhaes-de-Castro R, Canon F. Effect of a low-protein diet during pregnancy on skeletal muscle mechanical properties of offspring rats. Nutrition. 2008; 24(3):270-8. doi: 10.1016/j.nut.20 07.12.004.

Blundell J. Pharmacological approaches to appetite suppression. Trends Pharmacol Sci. 1991; 12(4): 147-57.

Nagase H, Nakajima A, Sekihara H, York DA, Bray GA. Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: the involvement of vagal-central nervous system interactions. J Gastroenterol. 2002; 37(Suppl 14):118-27.

Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404(6778):661-71. doi: 10.1038/35007534.

Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav. 2001; 74(4-5):683-701. doi: S0031938401006126.

Mercer JG, Speakman JR. Hypothalamic neuropeptide mechanisms for regulating energy balance: from rodent models to human obesity. Neurosci Biobehav Rev. 2001; 25(2):101-16. doi: S0149-7634(00)00053-1.

Shimokawa T, Kumar MV, Lane MD. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA. 2002; 99(1):66-71. doi: 10.10 73/pnas.012606199.

Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006; 443(7109):289-95. doi: 10.1038/nature05026.

He W, Lam TK, Obici S, Rossetti L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci. 2006; 9(2):227-33. doi: 10.10 38/nn1626.

Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci USA. 2003; 100(22):12624-9. doi: 10.1073/pnas.1834402100.

Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology. 2003; 144(4):1331-40. doi: 10.12 10/en.2002-221033.

Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009; 29(26):8302-11. doi: 10.1523/JNEUROSCI.1668-09.2009.

Fioramonti X, Contie S, Song Z, Routh VH, Lorsignol A, Penicaud L. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes. 2007; 56(5): 1219-27. doi: 10.2337/db06-0567.

Jo YH, Su Y, Gutierrez-Juarez R, Chua S, Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol. 2009; 101(5): 2305-16. doi: 10.1152/jn.91294.2008.

Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449(7159):228-32. doi: 10.1038/nature06098.

Cha SH, Hu Z, Chohnan S, Lane MD. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Proc Natl Acad Sci USA. 2005; 102(41):14557-62. doi: 10.1073/pnas.0507300102.

Gao S, Lane MD. Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci USA. 2003; 100(10):5628-33. doi: 10.1073/pnas. 1031698100.

Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991; 156:38-50; discussion 50-5.

Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004; 430(6998): 419-21. doi: 10.1038/nature02725.

Desai M, Gayle D, Babu J, Ross MG. Permanent reduction in heart and kidney organ growth in offspring of undernourished rat dams. Am J Obstet Gynecol. 2005; 193(3 Pt 2):1224-32. doi: 10.1016/j.ajog.2005.05.041.

Toscano AE, Amorim MA, de Carvalho Filho EV, Aragao RS, Cabral-Filho JE, de Moraes SR, et al. Do malnutrition and fluoxetine neonatal treatment program alterations in heart morphology? Life Sci. 2008; 82(21-22):1131-6. doi: 10.1016/j.lfs.2008.03.013.

Toscano AE, Ferraz KM, Castro RM, Canon F. Passive stiffness of rat skeletal muscle undernourished during fetal development. Clinics. 2010; 65(12): 1363-9. doi: S1807-59322010001200022.

Costa-Cruz RR, Amancio-dos-Santos A, Guedes RC. Characterization of cortical spreading depression in adult well-nourished and malnourished rats submitted to the association of pilocarpine-induced epilepsy plus streptozotocin-induced hyperglycemia. Neurosci Lett. 2006; 401(3):271-5.

Do Monte-Silva KK, Assis FL, Leal GM, Guedes RC. Nutrition-dependent influence of peripheral electrical stimulation during brain development on cortical spreading depression in weaned rats. Nutr Neurosci. 2007; 10(3-4):187-94.

Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000; 279(1):E83-7.

Coupe B, Grit I, Darmaun D, Parnet P. The timing of “catch-up growth” affects metabolism and appetite regulation in male rats born with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2009; 297(3):R813-24. doi: 10.1152/ajpregu.00201.2009.

Lopes de Souza S, Orozco-Solis R, Grit I, Manhaes de Castro R, Bolanos-Jimenez F. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci. 2008; 27(6):1400-8. doi: 10.1111/j.1460-9568.2008.06105.x.

Bayol S, Jones D, Goldspink G, Stickland NC. The influence of undernutrition during gestation on skeletal muscle cellularity and on the expression of genes that control muscle growth. Br J Nutr. 2004; 91(3):331-9. doi: 10.1079/BJN20031070.

Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005; 82(5):980-7.

Fahey AJ, Brameld JM, Parr T, Buttery PJ. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J Anim Sci. 2005; 83(11): 2564-71.

Brameld JM. The influence of undernutrition on skeletal muscle development. Br J Nutr. 2004; 91(3):327-8. doi: 10.1079/BJN20031077.

Mallinson JE, Sculley DV, Craigon J, Plant R, Langley-Evans SC, Brameld JM. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats. Br J Nutr. 2007; 98(2):292-9. doi: 10.1017/S0007114507701678.

Leandro CG, da Silva Ribeiro W, Dos Santos JA, Bento-Santos A, Lima-Coelho CH, Falcao-Tebas F, et al. Moderate physical training attenuates musclespecific effects on fibre type composition in adult rats submitted to a perinatal maternal low-protein diet. Eur J Nutr. 2011. doi: 10.1007/s00394-011-0259-3.

McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002; 51(1):7-18. doi: 10.2337/diabetes.51.1.7.

Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007; 87(2):507-20. doi: 10.1152/physrev.00024.2006.

van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch. 2006; 451(5):606-16. doi: 10.1007/s00424-005-1509-0.

Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006; 212(2):167-78. doi: 10.1016/j.taap.2006.01.003.

Camm EJ, Martin-Gronert MS, Wright NL, Hansell JA, Ozanne SE, Giussani DA. Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring. FASEB J. 2010; 25(1):420-7. doi: 10.1096/fj.10-15 8188.

Thompson NM, Norman AM, Donkin SS, Shankar RR, Vickers MH, Miles JL, et al. Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinology. 2007; 148(5):2345-54. doi: 10.1210/en.2006-1641.

Morton GJ, Schwartz MW. The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord. 2001; 25(Suppl 5):S56-62. doi: 10.1038/sj.ijo.0801915.

Cha SH, Rodgers JT, Puigserver P, Chohnan S, Lane MD. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. Proc Natl Acad Sci USA. 2006; 103(42):15410-5. doi: 10.1073/pnas.0607334103.

Broberger C. Brain regulation of food intake and appetite: molecules and networks. J Intern Med. 2005; 258(4):301-27. doi: 10.1111/j.1365-2796.2005.01553.x.

Cechetto DF, Saper CB. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol. 1988; 272(4):579-604. doi: 10.1002/cne.902720410.

Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000; 406(6794): 415-8. doi: 10.1038/35019082.

Orozco-Solis R, Matos RJ, Guzman-Quevedo O, Lopes de Souza S, Bihouee A, Houlgatte R, et al. Nutritional programming in the rat is linked to longlasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One. 2010; 5(10):e13537. doi: 10.1371/journal.pone.0013537.

Young JB. Developmental origins of obesity: a sympathoadrenal perspective. Int J Obes (London). 2006; 30(Suppl 4):S41-9. doi: 10.1038/sj.ijo.0803518.

Petry CJ, Dorling MW, Wang CL, Pawlak DB, Ozanne SE. Catecholamine levels and receptor expression in low protein rat offspring. Diabet Med. 2000; 17(12):848-53.

Fernandez-Twinn DS, Ekizoglou S, Wayman A, Petry CJ, Ozanne SE. Maternal low-protein diet programs cardiac beta-adrenergic response and signaling in 3-mo-old male offspring. Am J Physiol Regul Integr Comp Physiol. 2006; 291(2):R429-36. doi: 10.1152/ajpregu.00608.2005.

Barker D, Saito M. Autonomic innervation of receptors and muscle fibres in cat skeletal muscle. Proc R Soc Lond B Biol Sci. 1981; 212(1188):317-32.

Navegantes LC, Baviera AM, Kettelhut IC. The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle. Braz J Med Biol Res. 2009; 42(1):21-8. doi: S0100-879X2009000100005.

Eikelis N, Esler M. The neurobiology of human obesity. Exp Physiol. 2005; 90(5):673-82. doi: 10.11 13/expphysiol.2005.031385.

Hesselink MK, Mensink M, Schrauwen P. Human uncoupling protein-3 and obesity: an update. Obes Res. 2003; 11(12):1429-43. doi: 10.1038/oby.2003.192.

Downloads

Publicado

17-08-2023

Como Citar

BENTO-SANTOS, A., dos Reis SILVEIRA, L. ., MANHÃES-DE-CASTRO, R. ., & Gois LEANDRO, C. (2023). Desnutrição perinatal e o controle hipotalâmico do comportamento alimentar e do metabolismo do músculo esquelético. Revista De Nutrição, 25(3). Recuperado de https://puccampinas.emnuvens.com.br/nutricao/article/view/9257

Edição

Seção

ARTIGOS DE REVISÃO