Sociodemographic, clinical, and dietary characteristics of overweight adults
a secondary analysis of a population study
Keywords:
Body Mass Index, Diet, Obesity, OverweightAbstract
Objective
To estimate the prevalence of overweight among Brazilian adults aged 20 to 59, according to sociodemographic characteristics, health-related behaviors, and food consumption.
Methods
A cross-sectional study based on data from a population-based survey in a major metropolitan city in the state of São Paulo, Brazil, conducted between 2015-2016. Prevalences and prevalence ratios were estimated using Poisson regression; food consumption means were estimated using linear regression.
Results
We analyzed data from 855 adults, 61% of whom were overweight. The prevalence of overweight was significantly higher among males, those aged 30 or older, with 8 to 11 years of education, and those who reported eating more than they should. The body mass index was significantly associated with hypertension, diabetes, high cholesterol, waist-to-height ratio, taking weightloss medications, overeating, and the habit of checking labels. Overweight adults reported eating meat with visible fat and drinking soda more frequently than those not overweight. Overweight adults reported eating significantly more grams of food daily and had a higher intake of energy, total fat, saturated fats, trans fats, carbohydrates, protein, insoluble dietary fiber, sodium, and potassium. Their diets had a higher glycemic load when compared to participants who were not overweight.
Conclusion
Adults with and without overweight differed in their sociodemographic, dietary, and clinical characteristics. Diet quality was similar between both groups, suggesting a need for improving dietary habits in this population regardless of body weight.
References
Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627-42.
Pannu PK, Calton EK, Soares MJ. Calcium and Vitamin D in Obesity and Related Chronic Disease. Adv Food Nutr Res. 2016;77:57-100. http://dx.doi.org/10.1016/bs.afnr.2015.11.001
Ortega-Loubon C, Fernández-Molina M, Singh G, Correa R. Obesity and its cardiovascular effects. Diabetes Metab Res Rev. 2019;35(4).
Ministério da Saúde (Brasil). Vigitel Brasil 2019 : vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico : estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2019 [Internet]. Brasília: Ministério; 2020 [cited 2022 Mar 22]. Available from: https://www.saude.gov.br/images/pdf/2020/April/27/vigitel-brasil-2019-vigilancia-fatores-risco.pdf
Canella DS, Novaes HMD, Levy RB. Medicine expenses and obesity in Brazil: an analysis based on the household budget survey. BMC Public Health. 2016;16(1):1-8. http://dx.doi.org/10.1186/s12889-016-2709-6
Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic Burden of Obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4).
Balhareth A, Meertens R, Kremers S, Sleddens E. Overweight and obesity among adults in the Gulf States: a systematic literature review of correlates of weight, weight-related behaviours, and interventions. Obes Rev. 2019;20(5):763-93.
Smethers AD, Rolls BJ. Dietary management of obesity: cornerstones of healthy eating patterns. Med Clin North Am. 2018;102(1):107-24.
Malinowska AM, Mlodzik-Czyzewska MA, Chmurzynska A. Dietary patterns associated with obesity and overweight: when should misreporters be included in analysis? Nutrition. 2020;70.
Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica (Brasil). Guia Alimentar para a População Brasileira Guia Alimentar para a População Brasileira. 2nd ed. Melo EA, editor. Brasília: Minisério; 2014.
Alves MCGP. Plano de amostragem do Isacamp - 2014/15 [Internet]. Campinas: Unicamp; 2015 [cited 2022 Feb 3]. Available from: https://www.fcm.unicamp.br/fcm/sites/default/files/2018/page/plano_de_amostragem_isacamp_2014.15.pdf
World Health Organisation. Obesity: preventing and managing the global epidemic. Geneve: WHO Technical Report Series; 2000.
Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica (Brasil). Orientações para a coleta e análise de dados antropométricos em serviços de saúde: Norma Técnica do Sistema de Vigilância Alimentar e Nutricional - SISVAN / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. Brasília: Ministério; 2011.
Corrêa MM, Facchini LA, Thumé E, Oliveira ERA, Tomasi E. The ability of waist-to-height ratio to identify health risk. Rev Saude Publica. 2019;53(66).
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62.
Calvano S, Colugnati FAB, Domene SMA. Diet Quality Index associated with Digital Food Guide: update and validation. Cad Saude Publica. 2019;35(9).
Carvalho SDL, Filho AAB, Barros MBA, Assumpção D. Self-rated diet quality according to adolescents: ISACamp-nutri results. Cienc Saude Coletiva. 2020;25(11):4451-61.
Steinfeldt L, Anand J, Murayi T. Food reporting patterns in the USDA Automated Multiple-Pass Method. Procedia Food Sci. 2013;2:145-56. https://doi.org/10.1016/j.profoo.2013.04.022
Kelly MT, Rennie KL, Wallace JMW, Robson PJ, Welch RW, Hannon-Fletcher MP, et al. Associations between the portion sizes of food groups consumed and measures of adiposity in the British national diet and nutrition survey. Br J Nutr. 2009;101(9):1413-20.
Trumbo P, Schllicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621-30.
Kim YJ. The long-run effect of education on obesity in the US. Econ Hum Biol. 2016;21(2016):100-9. http://dx.doi.org/10.1016/j.ehb.2015.12.003
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metab Clin Exp. 2019;6-10.
Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275- 86.
Agência Nacional de Vigilância Sanitária. Relatório de consolidação das Consultas Públicas no 707 e 708/2019: rotulagem nutricional de alimentos embalados. Brasília: Anvisa; 2020;
World Health Organization. WHO Guidelines on physical activity and sedentary behaviour [Internet]. Geneve: World Health Organization; 2020 [cited 2022 Feb 9]. Available from: https://apps.who.int/iris/bitstream/handle/10665/325147/WHO-NMH-PND-2019.4-eng.pdf?sequence=1&isAllowed=y%0A
Ministério da Saúde (Brasil). Vigitel Brasil 2006-2021 : vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico : estimativas sobre frequência e distribuição sociodemográfica de prática de atividade física nas capitais dos 26 estados brasileiros e no Distrito Federal entre 2006 e 2021 : prática de atividade física [Internet]. Brasilía: Ministério; 2022 [cited 2022 Mar 9]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_atividade_fisica_2006_2021.pdf
Dankel SJ, Loenneke JP, Loprinzi PD. Health outcomes in relation to physical activity status, overweight/ obesity, and history of overweight: a review of the WATCH Paradigm. Sport Med. 2017;47:1029-34.
Singh AK, Singh R. Pharmacotherapy in obesity: a systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev Clin Pharmacol. 2020;13(1):53-64. https://doi.org/10.1080/17512433.2020.1698291
Gadde KM, Atkins KD. The limits and challenges of antiobesity pharmacotherapy. Expert Opin Pharmacother. 2020;21(11):1319-28. https://doi.org/10.1080/14656566.2020.1748599
Silva LES, Claro RM. Time trends in the consumption of fruits and vegetables among adults in brazilian state capitals and the federal district, 2008-2016. Cad Saude Publica. 2019;35(5):2008-16.
Granado FS, Maia EG, Mendes LL, Claro RM. Reduction of traditional food consumption in brazilian diet: trends and forecasting of bean consumption (2007-2030). Public Health Nutr. 2021;24(6):1185-92.
Philipsborn PV, Stratil J, Burns J, Busert L, Pfadenhauer LM, Polus S, et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst Rev. 2019;6(6).
Redondo M, Hernández-Aguado I, Lumbreras B. The impact of the tax on sweetened beverages: A systematic review. Am J Clin Nutr. 2018;108(3):548-63.
Itria A, Borges SS, Rinaldi AEM, Nucci LB, Enes CC. Taxing sugar-sweetened beverages as a policy to reduce overweight and obesity in countries of different income classifications : a systematic review. Public Health Nutr. 2021;24(16):5550-60.
Leong WYA, Ngiam JN, Tan RS, Lim SL, Poh KK. Controversies and discrepancies in the effect of dietary fat and cholesterol on cardiovascular risk. Singapore Med J. 2020;1-27.
Instituto Brasileiro de Geografia e Estatistica I. Pesquisa de Orçamentos Familiares 2017-2018 - Primeiros Resultados [Internet]. Rio de Janeiro: Instituto; 2019 [cited 2021 Nov 7]. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Pesquisa+de+Or?amentos+Familiares#0
Carvalho AM, Selem SSC, Miranda AM, Marchioni DM. Excessive red and processed meat intake: relations with health and environment in Brazil. Br J Nutr. 2016;115:2011-6.
Salter AM. The effects of meat consumption on global health. Rev Sci Tech. 2018;37(1):47-55.
Vega-López S, Venn BJ, Slavin JL. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. 2018;10(10):1-27.
Fontanelli MM, Sales CH, Carioca AAF, Marchioni DM, Fisberg RM. The relationship between carbohydrate quality and the prevalence of metabolic syndrome: challenges of glycemic index and glycemic load. Eur J Nutr. 2018;57(3):1197-205.
Asghari G, Mirmmiran P, Yuzbashian E, Azizi F. A systematic review of diet quality indices in relation to obesity. Br J Nutr. 2017;117(8):1055-65.
Ministério da Saúde (Brasil). Fascículo 1 - Protocolos de uso do guia alimentar para a população brasileira na orientação alimentar: bases teóricas e metodológicas e protocolo para a população adulta [Internet]. Brasília: Ministério; 2021 [cited 2022 Mar 22]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/protocolos_guia_alimentar_fasciculo1.pdf
Rodrigues RM, Souza AM, Bezerra IN, Pereira RA, Yokoo EM, Sichieri R. Most consumed foods in Brazil: evolution between 2008–2009 and 2017–2018. Rev Saude Publica. 2021;(55 Supl 1:4s):1-9.
Assumpção D, Martins S, Domene Á, Fisberg RM, Berti De Azevedo Barros M. Social and demographic inequalities in diet quality in a population-based study Desigualdades sociais e demográficas na qualidade da dieta em estudo de base populacional. Rev Nutr. 2016;29(2):151-62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Samantha Dalbosco Lins CARVALHO, Daniela de ASSUMPÇÃO, Daisuke HAYASHI, Antônio de Azevedo Barros FILHO , Thaís Moreira SÃO-JOÃO, Marília Estevam CORNÉLIO
This work is licensed under a Creative Commons Attribution 4.0 International License.