Chemical composition and hypocholesterolemic effect of milk kefir and water kefir in Wistar rats

Authors

  • Arthur ROCHA-GOMES Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Amanda ESCOBAR Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Jéssica Silva SOARES Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Alexandre Alves da SILVA Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Nísia Andrade Villela DESSIMONI-PINTO Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Tania Regina RIUL taniriul@yahoo.com.br

Keywords:

Anticholesteremic, Brown sugar, Cholesterol, Kefir, Milk, Rats, Wistar

Abstract

Objective
To compare the effects of fermented kefir on the nutritional, physiological, and biochemical parameters of rats.

Methods
Grains of milk kefir (whole and skimmed) and water kefir (brown sugar) were used. The chemical composition analysis was performed on substrates and fermented beverages. The rats were evaluated for weight gain, body mass index, as well as their food, water, kefir, and calorie intake. We also evaluated their energy efficiency coefficient, weight of organs, in addition to their serum, and hepatic biochemistry.

Results
Fermentation increased the acid content index owing to degradation of lactose and brown sugar. The animals consumed more kefir, reducing the intake of chow and water. Kefir did not alter body and organ weight, while improving the lipid profile.

Conclusion
Water kefir with brown sugar was more effective in improving the lipid profile. 

References

Bensmira M, Jiang B. Rheological characteristics and nutritional aspects of novel peanut based kefir beverages and whole milk kefir. Int Food Res J. 2012 [cited 2017 Sept 7];19(2):647-50. Available from: http://www.ifrj.upm.edu.my/19%20(02)%202012/(41)IFRJ-2012%20Meriem.pdf

Magalhães KT, Dragone G, Pereira GVM, Oliveira JM, Domingues L, Teixeira JA, et al. Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem. 2011;126(1):249-53. http://dx.doi.org/10.1016/j.foodchem.2010.11.012

Leite AM, Leite DC, Del Aguila EM, Alvares TS, Peixoto RS, Miguel MA, et al. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. J Dairy Sci. 2013;96(7):4149-59. http://dx.doi.org/10.3168/jds.2012-6263

Farnworth ER. Kefir: A complex probiotic. Food Sci Tech Bull Funct Foods. 2005 [cited 2017 Sept 7];2(1):1-17. Available from: http://www2.ufrb.edu.br/kefirdoreconcavo/images/artigos/artigo06.pdf

Hsieh HH, Wang SY, Chen TL, Huang YL, Chen MJ. Effects of cow’s and goat’s milk as fermentation media on the microbial ecology of sugary kefir grains. Int J Food Microbiol. 2012;157(1):73-81. http://dx.doi.org/10.1016/j.ijfoodmicro.2012.04.014

Laureys D, De Vuyst L. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl Environ Microbiol. 2014;80(8):2564-72. http://dx.doi.org/10.1128/AEM.03978-13

Association of Official Analytical Chemists. Official methods of analysis of AOAC International. Arlington: AOAC International; 2000.

Srebernich SM, Gonçalves GMS, Ormenese RCSC, Ruffi CRG. Physico-chemical, sensory and nutritional characteristics of cereal bars with addition of acacia gum, inulin and sorbitol. Food Sci Techn. 2016;36(3):555-62. http://dx.doi.org/10.1590/1678-457X.05416

Ministério da Ciência, Tecnologia e Inovação (Brasil). Conselho Nacional de Controle de Experimentação Animal. Diretrizes brasileira para o cuidado e a utilização de animais em atividade de ensino ou de pesquisa científica. Brasília: Concea; 2016.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 [cited 2017 Sept 7];18(6):499-502. Available from: http://clinchem.aaccjnls.org/content/clinchem/18/6/499.full.pdf

Touati S, Meziri F, Devaux S, Berthelot A, Touyz RM, Laurant P. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats. Med Sci Sports Exerc. 2011;43(3):398-407. http://dx.doi.org/10.1249/MSS.0b013e3181eeb12d

Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. São Paulo: Imesp; 1985.

Eufrásio MR, Barcelos MFP, Souza RV, Abreu WC, Lima MAC, Pereira MCA. Efeitos de diferentes tipos de fibras sobre frações lipídicas do sangue e fígado de ratos Wistar. Ciênc Agrotec. 2009;33(6):1608-14. http://dx.doi.org/10.1590/S1413-70542009000600021

Rocha DMUP, Martins JFL, Santos TSS, Moreira AVB. Labneh with probiotic properties produced from kefir: Development and sensory evaluation. Food Sci Technol. 2014;34(4):694-700. http://dx. doi.org/10.1590/1678-457x.6394

Almeida PF, Lannes SCS. Effects of chicken byproduct gelatin on the physicochemical properties and texture of chocolate spread. J Texture Stud. 2017;48:392-402. http://dx.doi.org/10.1111/jtxs.12242

Sánchez-Maldonado AF, Schieber A, Gänzle MG. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol. 2011;111(5):1176-84. http://dx.doi.org/10.1111/j.13652672.2011.05141.x

Bosso A, Morioka LRI, Santos LF, Suguimoto HH. Lactose hydrolysis potential and thermal stability of commercial b-galactosidase in UHT and skimmed milk. Food Sci Technol. 2016;36(1):159-65. http://dx.doi.org/10.1590/1678-457X.0085

Santos OV, Lorenzo ND, Lannes SCS. Chemical, morphological, and thermogravimetric of Terminalia catappa Linn. Food Sci Technol. 2016;36(1):151-8. http://dx.doi.org/10.1590/1678-457X.0090

Pereira EPR, Faria JAF, Cavalcanti RN, Garcia RKA, Silva R, Esmerino EA, et al. Oxidative stress in probiotic Petit Suisse: Is the jabuticaba skin extract a potential option? Food Res Int. 2016;81:149-56. http://dx.doi.org/10.1016/j.foodres.2015.12.034

Carvalho MF, Costa MKME, Muniz GS, Castro RM, Nascimento E. Experimental diet based on the foods listed in the Family Budget Survey is more detrimental to growth than to the reflex development of rats. Rev Nutr. 2013;26(2):177-93. http://dx.doi.org/10.1590/S1415-52732013000200006

Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One. 2013;8(7):e69868. http://dx.doi.org/10.1371/journal.pone.0069868

Dallas DC, Citerne F, Tian T, Silva VL, Kalanetra KM, Frese SA. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem. 2016;197(Pt A):273-84. http://:doi.org/10.1016/j.foodchem.2015.10.116

Leandro-Merhi VA, Aquino JLB, Camargo JGT, Oliveira MRM. Energy and fat intake are not associated with abdominal adiposity. Nutr Clin Metab. 2013;27(3):117-22. http://dx.doi.org/10.1016/j.nupar.2013.06.001

Liu J-R, Wang S-Y, Chen M-J, Chen H-L, Yueh P-Y, Lin C-W. Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters. Br J Nutr. 2006;95(5):939-46. http://dx.doi.org/10.1079/BJN20061752

Rosa DD, Peluzio MCG, Bueno TP, Canizares EV, Miranda LS, Dorbignyi BM. Evaluation of the subchronic toxicity of kefir by oral administration in Wistar rats. Nutr Hosp. 2014;29(6):1352-9. http://dx.doi.org/10.33 05/nh. 2014.29.6.7390

Alsayadi M, Jawfi YA, Belarbi M, Soualem-Mami Z, Merzouk H, Sari DC, et al. Evaluation of antihyperglycemic and anti-hyperlipidemic activities of water kefir as probiotic on Streptozotocin-induced diabetic Wistar rats. J Diabetes Mellitus. 2014 [cited 2017 Sept 7];4(2):85-95. Available from: http://file.scirp.org/pdf/JDM_2014042114015646.pdf

Huang Y, Wu F, Wang X, Sui Y, Yang L, Wang J. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J Dairy Sci. 2013;96(5):2816-25. http://dx.doi.org/10.3168/jds.2012-6371

Xie N, Cui Y, Yin YN, Zhao X, Yang JW, Wang ZG, et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med. 2011;11:53. http://dx.doi.org/10.1186/1472-6882-11-53

Lollo PCB, Moura CS, Morato PN, Cruz AG, Castro WF, Betim CB, et al. Probiotic yogurt offers higher immune-protection than probiotic whey beverage. Food Res Int. 2013;54(1):118-24. http://dx.doi.org/10.1016/j.foodres.2013.06.003

Fernandes DC, Alves AM, Castro GSF, Jordão Junior A, Naves MMV. Effects of Baru almond and Brazil nut against hyperlipidemia and oxidative stress In Vivo. J Food Res. 2015;4(4):38-46. https://dx.doi.org/10.5539/jfr.v4n4p38

Moura CS, Lollo PCB, Morato PN, Esmerino EA, Margalho LP, Santos-Junior VA, et al. Assessment of antioxidant activity, lipid profile, general biochemical and immune system responses of Wistar rats fed with dairy dessert containing Lactobacillus acidophilus La-5. Food Res Int. 2016;90:275-80. http://dx.doi.org/10.1016/j.foodres.2016.10.042

Salaj R, Stofilova J, Soltesova A, Hertelyova Z, Hijova E, Bertkova I, et al. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet. Sci World J. 2013;2013:135142. http://dx.doi.org/10.1155/2013/135142

Owaga EE, Chen MJ, Chen WY, Chen CW, Hsieh RH. Oral toxicity evaluation of kefir-isolated Lactobacillus kefiranofaciens M1 in SpragueDawley rats. Food Chem Toxicol. 2014;70:157-62. http://dx.doi.org/10.1016/j.fct.2014.05.005

Chen HL, Tung YT, Tsai CL, Lai CW, Lai ZL, Tsai HC, et al. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptindeficient ob/ob knockout mice. Int J Obes. 2014;38(9):1172-9. http://dx.doi.org/10.1038/ijo.2013.236

Published

2023-03-07

How to Cite

ROCHA-GOMES, A. ., ESCOBAR, A. ., Silva SOARES, J. ., Alves da SILVA, A., Andrade Villela DESSIMONI-PINTO, N. ., & RIUL, T. R. (2023). Chemical composition and hypocholesterolemic effect of milk kefir and water kefir in Wistar rats. Brazilian Journal of Nutrition, 31(2). Retrieved from https://puccampinas.emnuvens.com.br/nutricao/article/view/7638

Issue

Section

ORIGINAL ARTICLE