Effects of dietary high fructose corn syrup on regulation of energy intake and leptin gene expression in rats
Keywords:
Body weight, Diet, high-fat, Fatty acid synthase gene, Fructose, LeptinAbstract
Objective
To evaluate in Wistar rats the effect of chronic use of high fructose corn syrup on serum lipids, body weight, energy intake regulation, and expression of associated genes.
Methods
For 11 weeks, male rats were fed a standard diet with either water (control) or 15% high fructose corn syrup solution, or fed a high-fat diet. The rats’ food intake and body weight were measured weekly. Expression of leptin and fatty acid synthase genes was quantified in their brain and adipose tissue upon sacrifice at age 119 days using real-time polymerase chain reaction.
Results
The intake of 15% high fructose corn syrup did not affect the rats’ weight, only the rats on the high-fat diet gained significant weight. The rats in both diets had lower levels of leptin expression and high levels of fatty acid synthase in the brain, which were associated with high serum triglycerides.
Conclusion
Fifteen percent high fructose corn syrup intake and the high-fat diet reduced leptin gene expression in the brain of Wistar rats, with differential effects on weight gain.
References
Corporacion Nacional de Consumidores y Usuarios. Balance nacional de endulcorantes. Toledo: Infocanã; 2014 [acceso 2014 Mar 1]. Disponible en: http://www.infocana.gob.mx /lista_balances. php?t=2
Barquera S, Campos I, Rivera JA. Mexico attempts to tackle obesity: The process, results, push backs and future challenges. Obes Rev. 2013; 14(Suppl. 2): 69-78. http://dx.doi.org/10.1111/obr.12096
Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: A global perspective. Glob Public Health. 2013; 8(1):55-64. http://dx.doi.org/10.1080/17441692.2012.73 6257
Mattes RD, Shikany JM, Kaiser KA, Allison DB. Nutritively sweetened beverage consumption and body weight: A systematic review and meta-analysis of randomized experiments. Obes Rev. 2011; 12(5):346-65. http://dx.doi.org/10.1111/j.1467-78 9X.2010.00755.x
Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes Mellitus in African American women. Arch Int Med. 2008; 168(14): 1487-92. http://dx.doi.org/10.1001/archinte.168. 14.1487
Romaguera D, Norat T, Wark PA, Vergnaud AC, Schulze MB, van Woudenbergh GJ, et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-InterAct. Diabetologia. 2013; 56(7):1520-30. http://dx.doi.org/10.1007/s00125-013-2899-8
Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013; 97(3):517-23. http://dx.doi.org/ 10.3945/ajcn.112.050997
Bray GA. Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep. 2012; 14(6):570-8. http://dx.doi.org/10.1007/s11883-012-0276-6
de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012; 125(14):1735-41. http://dx.doi.org/10.1161/ CIRCULATIONAHA.111.067017
Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care. 2008; 31(7):1311-7. http://dx.doi.org/10.2337/dc08-0080
Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010; 299(5):E685-94. http://dx.doi.org/ 10.1152/ajpendo.00283.2010
Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein B in young men and women. J Clin Endocrinol Metab. 2011; 96(10):E1596-605. http://dx.doi.org/ 10.1210/jc.2011-1251
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009; 119(5):1322-34. http://dx.doi. org/10.1172/JCI37385
Cha SH, Wolfgang M, Tokutake Y, Chohnan S, Lane MD. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci. 2008; 105(44):16871-5. http://dx.doi.org/10.1073/pnas.0809255105
Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013; 309(1):63-70. http://dx. doi.org/10.1001/jama.2012.116975
Barquera S, Campirano F, Bonvecchio A, Hernandez-Barrera L, Rivera JA, Popkin BM. Caloric beverage consumption patterns in Mexican children. Nutr J. 2010; 9:47. http://dx.doi.org/10.11 86/1475-2891-9-47
Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape J Med. 2008; 10(7):160.
Forshee RA, Storey ML, Allison DB, Glinsmann WH, Hein GL, Lineback DR, et al. A critical examination of the evidence relating high fructose corn syrup and weight gain. Crit Rev Food Sci Nutr. 2007; 47(6):561-82. http://dx.doi.org/10.1080/104083 90600846457
Bocarsly ME, Powell ES, Avena NM, Hoebel BG. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav. 2010; 97(1):101-6. http://dx.doi.org/10.1016/j. pbb.2010.02.012
Light HR, Tsanzi E, Gigliotti J, Morgan K, Tou JC. The type of caloric sweetener added to water influences weight gain, fat mass, and reproduction in growing Sprague-Dawley female rats. Exp BiolMed. 2009; 234(6):651-61. http://dx.doi.org/10.3 181/0812-RM-368
Stanhope KL, Havel PJ. Fructose consumption: Potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008; 19(1):16-24. http://dx.doi.org/10.1097/MOL.0b0 13e3282f2b24a
Shibata K, Fukuwatari T. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats horizontal line protection by moderate d(+)- glucose diet. Nutr Metab Insights. 2013; 6:29-34. http://dx.doi.org/10.4137/NMI.S12584
Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am J Clin Nutr. 2012; 95(2):283-9. http://dx.doi.org/10.3945/ajcn. 111.022533
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997; 99(5):846-54. http://dx.doi.org/10.1172/JCI119248
Li X, Xu Z, Wang S, Guo H, Dong S, Wang T, et al. Emodin ameliorates hepatic steatosis through endoplasmic reticulum stress-sterol regulatory element binding protein 1c pathway in liquid fructose feeding rats. Hepatol Res. 2015. http://dx. doi.org/10.1111/hepr.12538. [Epub ahead of print].
Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western type high-fat diet plus fructose in rats. Free Radical Biol Med. 2009; 47(7):1067-74. http://dx.doi.org/ 10.1016/j.freeradbiomed.2009.07.016
LaBarge S, Migdal C, Schenk S. Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action? Mol Cells. 2015; 38(4):297-303. http://dx.doi.org/10.14348/molcells.2015.0020
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado de Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429(6993): 771-6. http://dx.doi.org/10.1038/nature02583
Rebollo A, Roglans N, Baena M, Sanchez RM, Merlos M, Alegret M, et al. Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim Biophys Acta. 2014; 1841(4): 514-24. http://dx.doi.org/10.1016/j.bbalip.2014.0 1.002
Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004; 53(5):1253-60.
Huang D, Dhawan T, Young S, Yong WH, Boros LG, Heaney AP. Fructose impairs glucose-induced hepatic triglyceride synthesis. Lipids Health Dis. 2011; 10:20. http://dx.doi.org/10.1186/1476-511 X-10-20
Bursac BN, Vasiljevic AD, Nestorovic NM, Velickovic NA, Vojnovic Milutinovic DD, Matic GM, et al. High fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats--do glucocorticoids play a role? J Nutr Biochem. 2014; 25(4):446-55. http://dx.doi.org/10.1016/j.jnutbio. 2013.12.005
Liu ZJ, Bian J, Liu J, Endoh A. Obesity reduced the gene expressions of leptin receptors in hypothalamus and liver. Horm Metab Res. 2007; 39(7):489-94. http://dx.doi.org/10.1055/s-2007-9 81680
Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Leptin gene expression in the brain and pituitary gland. Endocrinology. 1999; 140(12):5995-8. http:// dx.doi.org/10.1210/endo.140.12.7288
Haring SJ, Harris RB. The relation between dietary fructose, dietary fat and leptin responsiveness in rats. Physiol Behav. 2011; 104(5):914-22. http:// dx.doi.org/10.1016/j.physbeh.2011.05.032
Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity. Physiol Behav. 2006; 88(3):249-56. http://dx.doi.org/10.1016/j.physbeh. 2006.05.038
Prager GN, Ontko JA. Direct effects of fructose metabolism on fatty acid oxidation in a recombined rat liver mitochondria-hish speed supernatant system. Biochim Biophys Acta. 1976; 424(3):386-95.
Vila L, Roglans N, Alegret M, Sanchez RM, Vazquez Carrera M, Laguna JC. Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/ threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology. 2008; 48(5):1506-16. http://dx.doi.org/10.1002/hep. 22523
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Guadalupe LÓPEZ-RODRÍGUEZ, Silke Kotasek OSUNA, Marcos GALVÁN GARCÍA, Teodoro SUÁREZ DIEGUEZ
This work is licensed under a Creative Commons Attribution 4.0 International License.