Fortifying pork liver mixture: Evaluation of protein quality and iron bioavailability – Part 2

Autores/as

  • Silvana Mariana SREBERNICH Pontifícia Universidade Católica de Campinas
  • Gisele Mara Silva GONÇALVES Pontifícia Universidade Católica de Campinas
  • Semíramis Martins Álvares DOMENE Universidade Federal de São Paulo

Palabras clave:

Feeding strategy, Iron, Micronutrients, Proteins

Resumen

Objective
To evaluate the protein quality and iron bioavailability of a fortifying mixture based on pork liver.

Methods
Determinations of protein efficiency ratio, net protein utilization, true digestibility and hemoglobin regeneration efficiency by depletion and repletion were performed. In the depletion phase, the animals (male Wistar rats) received an iron-free AIN–93G diet and in the repletion phase they received the following diets: standard AIN–93G diet, fortifying mixture and standard diet containing heptahydrated ferrous sulfate for comparison.

Results
For standard AIN–93G diet and fortifying mixture the results were 3.75 and 4.04 for protein efficiency ratio and 3.53 and 3.63 for net protein retention, showing that the presence of pork liver in the diet promoted an increase in protein efficiency ratio and net protein retention (not statistically significant). True digestibility results obtained with the fortifying mixture (97.16%) were higher than those obtained with the standard AIN–93G diet (casein), but without significant difference. The hemoglobin regeneration efficiency values obtained for standard AIN–93G diet, fortifying mixture and standard diet containing heptahydrated ferrous sulfate were 50.69, 31.96
and 29.96%, respectively, showing a statistically significant difference between the control (standard AIN–93G diet) and test (fortifying mixture and standard diet containing heptahydrated ferrous sulfate) samples, but not between the test samples.

Conclusion
The fortifying mixture showed a high protein efficiency ratio value of 4.04 and a high relative biological value (108%) and it can be added to soups, creams and meats in day-care centers for the prevention of iron-deficiency in children of school age.

Citas

Bruins M, Mugambi G, Verkaik-Kloosterman J, Hoekstra J, Kraemer K, Osendar S, et al. Addressing the risk of inadequate and excessive micronutrient intakes: Traditional versus new approaches to setting adequate and safe micronutrient levels in foods. Food Nutr Res. 2015;59:26020. https://doi.org/10.3402/fnr.v59.26020

Aaron GJ, Dror DK, Yang Z. Multiple-micronutrient fortified non-dairy beverage interventions reduce the risk of anemia and iron deficiency in schoolaged children in low-middle income countries: A systematic review and meta-analysis (i-iv). Nutrients. 2015;7(5):3847-68.

Gibson SR. Enhancing the performance of foodbased strategies to improve micronutrients status and associated health outcomes in young children from poor resource households in lowincome countries: Challenges and solutions. In: Thompson B, Amoroso L, editors. Improving diets and nutrition. Rome: Food and Agriculture Organization of the United Nations; 2010. p.19-31.

Zotor FB, Ellahi B, Amuna P. Applying the food multimix concept for sustainable and nutritious diets. Proc Nutr Soc. 2015;74(4):505-16.

Mujifc-Coopman MF, Brito A, López de Romaña D, Ríos-FcstilloI, Coris H, Olivares M. Prevalence of anemia in Latin America and the Caribbean. Food Nutr Bull. 2015;36(2Suppl.):S119-28.

Elmadfa I, Meyer AL. Vitamins for the first 1000 days: Preparing for life. Int J Vitam Nutr Res. 2012;82(5):342-7.

Srebernich SM, Gonçalves GMS, Domene SMA. Fortifying pork liver mixture: Preparation and physicochemical characteristics: Part 1. Food Sci Technol. 2017;37(4). Epub Jul 20, 2017. https://doi.org/10.1590/1678-457x.13517

Reeves PG, Nielsen FH, Fahey Jr. GC. AIN-93 Purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A Rodent Diet. J Nutr. 1993 [cited 2016 Jul 1];123(11):1939-51. Available from: http://jn.nutrition.org/content/123/11/1939

Horwitz W, edtior. Official methods of analysis of the Association of Official Analytical Chemists. 17th ed. Gaithersburg: Association of Official Analytical Chemists; 2000. v.2.

Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: métodos físico-químicos para análise de alimentos. 5th ed. São Paulo: IAL; 2008. v.1

Pellet PL, Young VR. Evaluation of protein quality in experimental animals. In: Nutritional evaluation of protein foods. Tokyo: The United Nations University; 1980. p.41-57.

Hegsted DM. Protein quality and determination. In: Whitaker JR, Tannenbaum SR, editors. Food protein. Westport: AVI Publishing; 1977. p.347-62.

Fritz JC, Pla GW, Harrison BN, Clark GA. Estimation of the bioavailability of iron. J Assoc Off Anal Chem.1975;58(5):902-5.

Feltrin C, Morais MB, Freitas KC, Morais TB, Fagundes Neto U, Amancio OMS. Effect of soluble fiber pectin on growth and intestinal iron absorption in rats during recovery from iron deficiency anemia. Biol Trace Elem Res. 2009;(129):221-8.

Lima AO, Soares JB, Gre JB. Métodos de laboratório aplicador a clínica: técnica e interpretação. 8ª ed. Rio de Janeiro: Guanabara Koogan; 2001.

Nelson D, Morris M. Exame básico do sangue. In: Henry JB, editor. Diagnósticos clínicos e tratamento por métodos laboratoriais. São Paulo: Manole; 1995. p.641-99.

McKay RH, Higuchi DA, Winder WW, Feel RD, Brown EB. Tissue effects of iron deficiency in the rat. Biochim Biophys Acta.1983;757(3):352-8.

Mahoney AW, van Orden CC, Hendricks DG. Efficiency of converting food iron into hemoglobin by the anemic rat. Nutr Metab. 1974;17(4):223-30.

Statsoft INC. Statistica for Windows [Computer Program Manual]. Tulsa (OK): StatSoft Inc; 2000 [2016 Oct 14]. Available from: http://www.statsoft.com

Pires ISC, Costa NMB, Rosado GP, Oliveira RS, Monteiro JBR. Qualidade protéica da carne de novilho precoce alimentado com lipídios protegidos. Ciênc Tecnol Aliment. 2006;26(4):799-804.

Fontes PR. Valor protéico, biodisponibilidade de ferro e aspectos toxicológicos mortadelas formuladas com sangue tratado com monóxido de carbono [tese]. Viçosa: Universidade Federal de Viçosa; 2006.

Ritskes-Hoitinga M, Chwalibog A. Nutrient requirements, experimental design, and feeding schedules in animal experimentation. In: Hau J, Van Hoosier GL, editors. Handbook of laboratory animal science. 2nd ed. Boca Raton: CRC Press; 2003. p.1-30. v.1.

Mendes FQ, Oliveira MGA, Pires CV, Costa NMB, Hoffman ZB. Qualidade protéica de diversosalimentos incluindo diferentes variedades de soja. Alim Nutr. 2009;20(1):77-86.

Castro LCV. Efeitos da intervenção com suplemento alimentar à base de soro de leite adicionado de prebiótico no estado nutricional de ferro e vitamina A em pré-escolares [tese]. Viçosa: Universidade Federal de Viçosa; 2010 [acesso 2016 jul 7]. Disponível em: http://www.tede.ufv.br/tedesimplificado/tde_arquivos/38/TDE2010-10-29T082606Z-2623/Publico/texto%20completo.pdf

Ybarra LM, Costa NMB, Ferreira CLL. Interação cálcio e ferro: uma revisão. Nutrire. 2001;22:85-107.

Boaventura GT, Silva RHL, Tostes LF, Azeredo VB. Ganho de peso, hemoglobina e hematócrito de ratos recebendo dieta de Quissamã, RJ, com ou sem suplemento alimentar alternativo. Rev Nutr. 2003;16(3):321-31. https://doi.org/10.1590/S1415-52732003000300010

Haro-Vicente JF, Rez-Conesa D, Braqueh FR, Ros G. Iron absorption and haemoglobin status of rats fed a ferrous bisglycinate-fortified growing-up milk. J Sci Food Agric. 2009;89(12):2107-14.

De Carvalho IST, Granfeldt Y, Dejmek P, Håkansson A. From diets to foods: Using linear programming to formulate a nutritious, minimum-cost porridge mix for children aged 1 to 2 years. Food Nutr Bull. 2015;36(1):75-85.

Navas-Carretero S, Sarriá B, Péres-Granados AM, Schoppem S, Izquierdo-Pulido M, Vaquero MPA. Comparative study of iron bioavailability from cocoa supplemented with ferric pyrophosphate or ferrous fumarate in rats. Ann Nutr Metab. 2007;51(3):204-7. https://doi.org/10.1159/000104138

Zimmermann MB, Hurrel RF. Nutritional iron deficiency. Lancet. 2007 [cited 2016 Jul 6];370(9586):511-20. Available from: http://www5.medicine.wisc.edu/~williams/nutritional_iron_deficiency_2007.pdf

Gillespie SR, Mason JB, Kevany J. Controlling iron deficiency: Nutrition policy discussion. Geneva: WHO; 1991 [cited 2016 Jul 1]. Available from: http://www.unscn.org/layout/modules/resources/files/Policy_paper_No_9.pdf

Torres MAA, Sato K, Juliano Y, Queiroz SS. Terapêutica com doses profiláticas de sulfato ferroso como medida de intervenção no combate à carência de ferro em crianças atendidas em unidades básicas de saúde. Rev Saúde Pública. 1994;28(6):410-5.

Cardoso MA, Penedo MVC. Intervenções nutricionais na anemia ferropriva. Cad Saúde Pública. 1994 [acesso 2016 jul 8];10(2):231-40. Disponível em: http://www.scielo.br/pdf/csp/v10n2/v10n2a10.pdf

Monteiro CA, Szarfarc SCA prescrição semanal de sulfato ferroso pode ser altamente efetiva para reduzir níveis endêmicos de anemia na infância. Rev Bras Epidemiol. 2002;5(1):71-83.

Coutinho GGPL. Eficácia do procedimento de suplementação com ferro em ciclos para redução da anemia em pré-escolares [tese]. São José do Rio Preto: Faculdade de Medicina de São José do Rio Preto; 2009 [acesso 2016 jul 5]. Disponível em: http://bdtd.famerp.br/tde_arquivos/1/TDE-2010-05-05T081810Z196/Publico05T081810Z196/Publico/05T081810Z196/Publico/geraldogasparpaeslemecoutinho_tese.pdf

Descargas

Publicado

2023-03-10

Cómo citar

SREBERNICH, S. M. ., Silva GONÇALVES, G. M. ., & Martins Álvares DOMENE, S. . (2023). Fortifying pork liver mixture: Evaluation of protein quality and iron bioavailability – Part 2. Revista De Nutrição, 30(6). Recuperado a partir de https://puccampinas.emnuvens.com.br/nutricao/article/view/7737

Número

Sección

ARTIGOS ORIGINAIS