Evolução e Características da Rede de Inovação Cruzada em Tecnologias Emergentes

um estudo baseado em dados de patentes da tecnologia de carros autônomos

Autores

Palavras-chave:

Tecnologias emergentes, Crossover Rede de Inovação, Análise de Redes Sociais, Estrutura da Rede

Resumo

Com o rápido desenvolvimento de uma nova fase de revolução científica e tecnológica, transformação industrial, fabricação digital, inteligência artificial, internet e outros campos emergentes marcados pela digitalização e inteligência estão experimentando ampla penetração e constante emergência de inovação cruzada. O desenvolvimento de novas tecnologias é um caminho constante de ampliação na diversidade de recursos, marcado por uma complexidade e incerteza significativas. No entanto, satisfazer as exigências do desenvolvimento de tecnologias emergentes apenas com os recursos inovadores e habilidades das próprias empresas torna-se uma tarefa desafiadora. A limitação de recursos inovadores instiga as empresas de tecnologia emergente a trocar ativamente ou passivamente diversos recursos inovadores com outros agentes de inovação, transcendo limites
organizacionais, tecnológicos ou industriais. Isso impulsiona o rápido surgimento de redes de inovação cruzada em tecnologias emergentes, tornando-se uma maneira crucial para as empresas de tecnologia emergente evitarem riscos inovadores e aprimorarem a eficiência da inovação. Este estudo emprega a análise de redes sociais para construir redes de coocorrência de códigos IPC, redes de cooperação entre detentores de patentes e redes de
citação de patentes em estágios específicos. Utilizando dados de patentes de tecnologia de carros autônomos de 2006 a 2020 como amostras, analisa a cooperação entre os sujeitos, o fluxo de conhecimento e a convergência tecnológica no processo de inovação cruzada. Explora o processo evolutivo da rede de inovação cruzada em tecnologias emergentes e suas características em cada estágio, proporcionando insights relevantes.

Downloads

Não há dados estatísticos.

Referências

Albert, R.; Barabási, A. Statistical mechanics of complex networks. Review of Modern Physics, v. 74, n. 1, p. 47-97, 2002.

Cantner, U.; Graf, H. The network of innovators in Jena: An application of social network analysis. Research Policy, v. 35, n. 4, p. 463-480, 2006.

Cantner, U.; Meder, A.; Wal, A. L. J. T. Innovator networks and regional knowledge base. Jena Economic Research Papers, v. 30, n. 9-10, p. 496 -507, 2010.

Choi, J., Sang-Hyun, A., Cha, M. S. The effects of network characteristics on performance of innovation clusters. Expert Systems with Applications, v. 40, n. 11, p. 4511-4518, 2013.

Choe, H. et al. Structural properties and inter- organizational knowledge flows of patent citation network: The case of organic solar cells. Renewable & Sustainable Energy Reviews, n. 55, p. 361-370, 2016.

Deeds, D. L.; Hill, C. W. L. An examination of opportunistic action within research alliances: Evidence from the biotechnology industry. Journal of Business Venturing, v. 14, n. 2, p. 141-163, 1999.

Day, G. S.; Schoemaker, P. J. H. Avoiding the pitfalls of emerging technologies. California Management Review, v. 42, n. 2, p. 8-33, 2000.

Dang, X. H.; Zheng, D. P. A further review on “The review of 17-year research literature on innovation network”: the definition, formation and classification of technological innovation network. R&D Management, v. 23, n. 3, p. 9-14, 2011.

Fitjar, R. D.; Rodríguezpose, A. When local interaction does not suffice: Sources of firm innovation in Urban Norway. Environment & Planning A, v. 43, n. 6, p. 1248-1267, 2011.

Feng, L. J. et al. The evolution path of latecomer firms’ value network from the perspective of disruptive innovation. Studies in Science of Science, n.1, p.175-183, 2019.

Freeman, L. C. Centrality in social networks conceptual clarification. Social Networks, v. 1, n. 3, p. 215-239, 1978.

Freeman, C. Networks of innovators: a synthesis of research issues. Policy Research, v. 20, n. 5, p. 499-514, 1991.

Guan, J. C.; Yam, R. C. M. Effects of government financial incentives on firms’ innovation performance in China: Evidences from Beijing in the 1990s. Research Policy, v. 44, n. 1, p. 273-282, 2015.

Hua, L.; Wang, W. P. Optimistic structures of collective innovation networks in different stages of industry life circle. Chinese Journal of Management Science, v. 21, n. 5, p. 129-140, 2013.

Karna, A.; Taübe, F.; Sonderegger, P. Evolution of innovation networks across geographical and organizational boundaries: a study of R&D subsidiaries in the Bangalore IT cluster. European Management Review, v. 10, n. 4, p. 211-226, 2013.

Kim, H.; Song, J. S. Social network analysis of patent infringement lawsuits. Technological Forecasting & Social Change, v. 80, n. 5, p. 944-955, 2013.

Liu, Y.; Zhou, Y. F.; An, J. Analysis of core technology domain of electric vehicle based on patent co-citation. Journal of Information Technology, n. 3, p. 328-336, 2013.

Lee, C.; Park, G.; Kang, J. The impact of convergence between science and technology on innovation. Journal of Technology Transfer, v. 43, n. 2, p. 1-23, 2018.

Liu, Y. F. et al. Multi-domain knowledge convergence trajectory analysis of strategic emerging industries-based on citation network and text information. Strategic Study of CAE, v. 22, n.2, p.120-129, 2020.

Liu, Y. L.; Jian, L. R. Comparative study on the similarities and differences in the evolution of e-commerce data technology between China and the United Sates-from the perspective of dynamic patent directed network analysis. Journal of Intelligence, v. 41, n. 8, p. 201-207, 2022.

Ma, T. Q. Patent analysis: methods, chart interpretation and intelligence mining. Intellectual Property Press, 2015.

Mario, A. M.; Teodora, E. U.; Stefano, U. Treating patents as relational data: Knowledge transfers and spillovers across Italian Provinces. Industry & Innovation, 2011, v. 18, n. 1, p. 39-67, 2011.

Marra, A.; Antonelli, P.; Pozzi, C. Emerging green-tech specializations and clusters-a network analysis on technological innovation at the metropolitan level. Renewable & Sustainable Energy Reviews, v. 67, p. 1037-1046, 2017.

Muller, E. Delimiting disruption: Why Uber is disruptive, but Airbnb is not? International Journal of Research in Marketing, v. 37, n. 1, p.43-55, 2020.

Mao, J. Q. et al. Research on the relationship among inventor innovation network embeddedness, network stability and innovation performance. Scientific Decision Making, n. 3, p. 1-16, 2021.

Narula, R.; Santangelo, G. D. Location, collocation and R&D alliances in the European ICT industry. Research Policy, v. 38, n.2, p. 393-403, 2009.

Raffaelli, R. Technology reemergence: Creating new value for old technologies in Swiss mechanical watchmaking, 1970-2008. Administrative Science Quarterly, v. 64, n. 3, p. 576-618, 2019.

Stolpe, M. Determinants of knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology. Research Policy, v. 31, n. 7, p. 1181-1198, 2002.

Shao, Y. F.; Dang, Y.; Wang, S. M. The mechanism of crossover innovation in fuzzy front end of breakthrough innovation. Science & Technology Progress and Policy, n. 22, p. 8-16, 2018.

Shi, W. P. et al. Network power, resource occupation and cooperative behavior: The moderating role of interorganizational

trust and benchmarking effect. Scientific Decision Making, n. 5, p. 25-42, 2020.

Safadi, H.; Johnson, S. L.; Faraj, S. Who contributes knowledge? Core-periphery tension in online innovation communities. Organization Science, v. 32, n. 3, p. 752-775, 2021.

Wang, D. The evolution mechanism of enterprise innovation network. Studies in Science of Science, v. 24, n. 5, p. 790-786, 2006.

Yan, A. M. Research on enterprise niche evaluation index and model construction. Science and Technology Progress and Countermeasures, v. 24, n. 7, p. 156-160, 2007.

Zhai, D. S. et al. Research on Dewinter Patent Information cleaning and labeling model. Chinese Journal of Information, v. 32, n. 8, p. 150-154, 2013.

Zhao, Y. X. et al. Realization mechanism of cross-industry expansion of focal firms based on the innovation ecosystem: A Iongitudinal case study from the perspective of social embeddedness. Nankai Business Review, v. 25, n.6, p.52-63, 2022.

Downloads

Publicado

29-01-2024

Como Citar

Jin, Y., Cao, X., & Ma, H. (2024). Evolução e Características da Rede de Inovação Cruzada em Tecnologias Emergentes: um estudo baseado em dados de patentes da tecnologia de carros autônomos. Transinformação, 36, 1–19. Recuperado de https://puccampinas.emnuvens.com.br/transinfo/article/view/7316

Edição

Seção

Data and Information in Online Environments