Consolidated technologies, ongoing innovations and technologies introduced to the international market: A case study
Keywords:
International patent classification, Patent indicators, Patents, Shale-gas production, Technological trajectoriesAbstract
The aim of this research is to understand the technological trajectory of the case study of Shale gas production. As a unit of analysis and measurement, we used the international classification of patents for inventions related to the topic retrieved from three different international databases. First the study analyzes consolidated technologies considered as granted patents, then the ongoing innovations identified as patent applications, and last the technologies introduced to the international market granted through the Patent Cooperation Treaty. According to the methodology, the frequency and relational indicators were applied to the unit under study. The results obtained describe the technological behavior of the domain. This technique allowed identifying the subject areas involved in the geophysical processes of oil and Shale-gas production related to the use of digital computing systems through the study of patent classifications.
Downloads
References
Bhatt, A.; Helle, H.B. Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting, v.50, n.645, p.660, 2002.
Cong, H.; Han-Tong, L. Pattern-oriented associative rule-based patent classification. Expert Systems with Applications, v.37, n.3, p.2395-2404, 2010.
Díaz-Pérez, M. Visualización del análisis del dominio tecnológico de Cuba: 1997-2008. 2010. Tesis (Doctoral en Documentación) - Departamento de Biblioteconomía y Documentación, Universidad de Granada, Granada, 2010.
Díaz-Pérez, M.; Giraldez Reyes, R.; Armas Peñas, D. Principales resultados de innovación tecnológica de Cuba en Estados Unidos: una visión desde las patentes. Ciencias de la Información, v.39, n.2, p.37-46, 2008.
Díaz-Pérez M., et al. Análisis patentométrico de la información desde la perspectiva de género. Acimed, v.20, n.2, 2009.
Disponible en: <http://scielo.sld.cu/scielo.php?pid=S1024-94352009000800002&script=sci_arttext>. Acceso en: 20 sep. 2013.
Díaz-Pérez, M.; Guzmán M.V.; Orea U. Estudio patentométrico de un proyecto de investigación. Ciencias de la Información, v.38, n.1-2, p.57-66, 2007.
Díaz-Pérez, M; Moya-Anegón, F. El Análisis de patentes como estrategia para la toma de decisiones innovadoras. El Profesional de la Información, v.17, n.3, 2008. Disponible en: <http://www.elprofesionaldelainformacion.com/contenidos/2008/mayo/05.html>. Acceso en: 2 oct. 2013.
Díaz-Pérez, M.; Rivero, S.; Moya-Anegón, F. Producción tecnológica latinoamericana con mayor visibilidad internacional: 1996-2007: un estudio de caso: Brasil. Revista
Española de Documentación Científica, v.33, n.1, p.34-62, 2010.
Dorrington, K.P.; Link, C.A. Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction. Geophysics, v.69, n.1, p.212-221, 2004.
Fall, C.J., et al. Automated categorization in the international patent classification. ACM SIGIR Forum, v.37, n.1, p.10-25, 2003.
Giráldez, R.; Díaz-Pérez, M.; Armas, D. PROInTec: un software para el tratamiento inteligente de datos sobre patentes. Acimed, v.17, n.5, p.1-9, 2008. Disponible en: <http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352008000500006>. Acceco en: 17 sep. 2013.
Helle, H.B.; Bhatt, A.; Ursin, B. Porosity and permeability prediction from wireline logs using artificial neural networks: a north sea case study. Geophysical Prospecting, v.49, n.4, p.431-444, 2001.
Iturriaran, U. Smooth regression to estimate effective porosity using seismic attributes. Journal of Applied Geophysics, v.76, p.1-12, 2012.
Jaffe, A.B.; Trajtenberg, M. Patents, citations & innovations: A window on the knowledge economy. Cambridge, MA: MIT Press, 2002.
Leydesdorff, L. Various methods for the mapping of science. Scientometrics, v.1, n.5-6, p.291-320, 1987.
Leydesdorff, L. The university–industry knowledge relationship: Analyzing patents and the science base of technologies. Journal of the American Society for Information
Science & Technology, v.55, n.11, p.991-1001, 2004.
Leydesdorff, L. Patent classifications as indicators of intellectual organization. Journal of the American Society for Information Science and Technology, v.59, n.10, p.1582-1597, 2008.
Leydesdorff, l.; Heimeriks, G. The self organization of the European Information Society: The case of “Biotechnology”. Journal of the American Society for information Science and Technology, v.52, n.14, p.1262-1274, 2001.
Leydesdorff, L.; Meyer, M. The scientometrics of a triple helix of university-industry-government relations (Introduction to the topical issue). Scientometrics, v.70, n.2, p.207-222, 2007.
Oficina Española de Patentes y Marcas. Manual de estadísticas de patentes de la OCDE. Madrid: OEPM, 1994.
Pramanik, A.G., et al. Estimation of effective porosity using geostatistics and multiattribute transforms: A case study. Geophysics, v.69, n.2, p.352-372, 2004.
Tijssen, R.J.W. Cartography of science: Scientometric mapping with multidimensional scaling methods. Leiden: DSWO Press, 1992.
Van Zeebroeck., et al. Issues in measuring the degree of technological specialization with patent data. Scientometrics, v.66, n.3, p.481-492, 2006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Transinformação
This work is licensed under a Creative Commons Attribution 4.0 International License.