A method for converting business process models into semantic knowledge graphs to aid in decision making

Authors

Keywords:

BPMN, Knowledge graph, Business process modeling, Ontology

Abstract

Business process modeling plays a key role in representing the flow of activities carried out by an organization. This flow is clearly recorded, based on information and knowledge provided by those involved in the process. As a result, the modeled processes can be shared, enabling the institutionalization of this knowledge. In order to make decision-making more efficient and reliable, this work aims to propose a conversion method capable of extracting information from business process models, described with the Business Process Model and Notation notation, registering them in graphs of semantic knowledge, using the Business Process Model and Notation 1.1 Ontology. Therefore, it is proposed the construction of a knowledge base formally structured from the models, in order to enable precise consultations and extraction of indicators. To this end, the methodology used comprises a literature review, followed by the elaboration of the proposed conversion method and its validation through an empirical study. Analyzing the results, it can be stated that the method was successful in converting the process model into the underlying knowledge base, and this, in turn, allowed the automatic extraction of indicators to assist decision-making by the managers involved.

Downloads

Download data is not yet available.

References

Association of Business Process Management Professionals. BPM CBOK V4.0: Guia para o Gerenciamento de Processos de Negócio: Corpo Comum de Conhecimento. Brasília, DF: ABPMP Brasil, 2020.

Antoniou, G. et al. A Semantic Primer. 3. ed. Cambridge, Mass.: MIT Press, 2012.

Beckett, D. et al. RDF 1.1 Turtle: Terse RDF Triple language. [S. l.]: W3C Recommendation, 2014. Disponível em: https://www.w3.org/TR/turtle/. Acesso em: 12 set. 2022.

Bizagi. Bizagi Modeler. [S. l.: s. n.], 2022. Disponível em: https://www.bizagi.com/. Acesso em: 20 out. 2022.

Dresch, A.; Lacerda, D. P.; Antunes, J. A. V. J. Design science research: método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman Editora, 2020.

Fanesi, D.; Cacciagrano, D. R.; Hinkelmann, K. Semantic Business Process Representation to Enhance the Degree of BPM Mechanization: An Ontology. In: International Conference on Enterprise Systems, 2015, Basel, Switzerland. US: IEEE, 2015. p. 21-32. Doi: https://doi.org/10.1109/ES.2015.10.

Figueiredo, L. R. Mapeamento de Modelos de Processos de Negócio para Ontologias, incluindo sistema de consultas. 2018. Dissertação (Mestrado em Ciência da Computação) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo, 2018.

Figueiredo, L. R.; Oliveira, H. C. Automatic Generation of Ontologies from Business Process Models. In: International Conference on Enterprise Information Systems, 20th., Madeiro, Portugal, 2018. Proceedings […]. Madeiro, Portugal, 2018. v. 2, p. 81-91. Doi: https://doi.org/10.5220/0006709100810091.

Figueiredo, L. R.; Oliveira, H. C. Automatic Mapping of Business Process Models for Ontologies with an Associated Query System. In: Hammoudi, S. et al. (ed.). Enterprise Information Systems: ICEIS 2018. [S. l.]: Springer, 2019. p. 215-238. Lecture Notes in Business Information Processing, v. 363. Doi: https://doi.org/10.1007/978-3-030-26169-6_11.

Fondazione Bruno Kessler. The BPMN 2.0 Ontology v0.4. [S. l.]: Data & Knowledge Management, 2014. Disponível em: https://dkm.fbk.eu/bpmn-ontology. Acesso em: 10 set. 2022.

Guido, A. L.; Pandurino, A.; Paiano, R. An Ontological Meta-model for Business Process Model and Notation (BPMN). International Journal of Business Research and Management, v. 7, n. 3, p. 40-52, 2016.

Huang, Y. et al. Business process modeling algorithm based on ontology language. Journal of System Simulation, v. 29, n. 10, p. 2282-2290, 2017. Doi: https://doi.org/10.16182/j.issn1004731x.joss.201710008.

Jacyntho, M. D. A. Um modelo de bloqueio multigranular para RDF. 107 f. Tese (Doutorado em Informática) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2012.

Kchaou, M. et al. Transformation of BPMN Model into an OWL2 Ontology. In: International Conference on Evaluation of Novel Approaches to Software Engineering, 16., 2021, Setúbal, Portugal. Proceedings […]. Setúbal, Portugal: ScitePress, 2021. p. 380-388. Doi: https://doi.org/10.5220/0010479603800388.

Mertens, S. et al. Integrated declarative process and decision discovery of the emergency care process. Information Systems Frontiers, v. 24, p. 305-327, 2022. Doi: https://doi.org/10.1007/s10796-020-10078-5.

Natschläger, C. Towards a BPMN 2.0 Ontology. In: Dijkman, R.; Hofstetter, J.; Koehler, J. (ed.). Business Process Model and Notation. Berlin: Springer, 2011. p. 1-15. (Lecture Notes in Business Information Processing, v. 95). Doi: https://doi.org/10.1007/978-3-642-25160-3_1.

Noy, N. F., McGuiness, D. L. Ontology Development 101: A guide to creating your first ontology. Stanford, CA: Stanford Knowledge Systems Laboratory, 2001. Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880.

Object Management Group. Business Process Model and Notation (BPMN): Version 2.0. Milford, MA: Object Management Group, 2011. Disponível em: http://www.bpmn.org/. Acesso em: 18 set. 2022.

Ontotext. Ontotext GraphDB. New York: Ontotext, 2023. Disponível em: https://www.ontotext.com/products/graphdb/. Acesso em: 10 jan. 2023.

Peffers, K. et al. A design science research methodology for information systems research. Journal of Management Information Systems, v. 24, n. 3, p. 45-77, 2007.

Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and Complexity of SPARQL. ACM Transactions on Database Systems, v. 34, n. 3, p. 145, 2009. Doi: https://doi.org/10.1145/1567274.1567278.

Rospocher, M.; Ghidini, C.; Serafini, L. An ontology for the Business Process Modeling Notation. Frontiers in Artificial Intelligence and Applications, v. 267, p. 133-146, 2014. Doi: http://dx.doi.org/10.3233/978-1-61499-438-1-133.

Szabó, I.; Ternai, K. Semantic Audit Application for Analyzing Business Processes. In: Tjoa, A. et al. (ed.). Research and practical issues of enterprise information systems: CONFENIS 2016. [S. l.]: Springer, 2016. p. 3-5. (Lecture Notes in Business Information Processing, v. 268). Doi: https://doi.org/10.1007/978-3-319-49944-4_1.

Ternai, K. Semi-automatic Methodology for Compliance Checking on Business Processes. In: Kő, A.; Francesconi, E. (ed.). Electronic Government and the Information Systems Perspective: EGOVIS 2015. [S. l.]: Springer, 2015. p. 243-256. (Lecture Notes in Computer Science, v. 9265). Doi: https://doi.org/10.1007/978-3-319-22389-6_18.

Ternai, K.; Török, M.; Varga, K. Corporate Semantic Business Process Management. In: Gábor, A.; Kő, A. (ed.). Corporate Knowledge Discovery and Organizational Learning. [S. l.]: Springer, 2016. p. 33-57. (Knowledge Management and Organizational Learning, v. 2). Doi: https://doi.org/10.1007/978-3-319-28917-5_2.

Workflow Management Coalition. Worflow Standard: Process Definition Interface – XML Process Definition Language. Version 2.2. [S. l.: s. n.], 2012. Disponível em: http://www.xpdl.org/. Acesso em: 29 set. 2022.

World Wide Web Consortium. W3C Semantic Web Activity. [S. l.: s. n.], 2022a. Disponível em: https://www.w3.org/2001/sw/. Acesso em: 18 set. 2022.

World Wide Web Consortium. Web Ontology Language. [S. l.: s. n.], 2022b. Disponível em: https://www.w3.org/OWL/. Acesso em: 18 set. 2022.

Yanuarifiani A. P.; Laksitowening, K. A.; Wibowo, Y. F. A. A methodology in selecting enterprise architecture framework for corporate information factory. In: International Conference on Science in Information Technology, 2015, Yogyakarta, Indonesia. Proceedings [...]. Yogyakarta, Indonesia: IEEE, 2015. p. 106-109. Doi: https://doi.org/10.1109/ICSITech.2015.7407786.

Zhang, J. et al. Ontology acquisition method for business process modelling and improvement. In: International Conference on Wireless Communications, Networking and Mobile Computing, 4th., 2008, Dalian, China. Proceedings [...]. Dalian, China: IEEE, 2008. p. 1-4. Doi: https://doi.org/10.1109/WiCom.2008.2950.

Published

2024-10-30

How to Cite

Salvador, M. C., Silva, A. V. da, Silva, S. V., & de Azevedo Jacyntho, M. D. (2024). A method for converting business process models into semantic knowledge graphs to aid in decision making. Transinformação, 36. Retrieved from https://puccampinas.emnuvens.com.br/transinfo/article/view/8136

Issue

Section

Original