Food consumption, overweight, obesity, and sociodemographic profile in a Brazilian capital: a time trend analysis between 2006 and 2018

Authors

  • Luiza Eunice Sá da SILVA Universidade Federal de Minas Gerais
  • Thaís Cristina Marquezine CALDEIRA Universidade Federal de Minas Gerais
  • Rafael Moreira CLARO Universidade Federal de Minas Gerais

Keywords:

Food Consumption, Health surveys, Obesity, Public health

Abstract

Objective
To analyze the time trend of sociodemographic characteristics and the prevalence of food consumption, overweight, and obesity variables among adults in the city of Belo Horizonte, Brazil, between 2006 and 2018.
Methods
A time series study involving data from the Sistema de Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico (Vigitel, Surveillance System of Risk and Protective Factors for Chronic Diseases by Telephone Survey), between 2006 and 2018 in Belo Horizonte (n=25,443). The annual prevalence of the population’s sociodemographic characteristics (sex, age groups, and years of schooling), and risk and protective factors for chronic diseases related to food consumption and nutritional status were estimated. Prais-Winsten regression models were used to investigate the temporal variation of each variable.
Results
From 2006 to 2018, there was a significant increase in the age and educational level of the adult population of Belo Horizonte. In the same period, the prevalence of recommended consumption of fruits and vegetables increased (from 23.0% to 29.2%), while that of consumption of fat-rich meat and regular consumption of soft drinks decreased (respectively, from 41.9% to 38.0%; from 35.3% to 15.2%). In parallel, the prevalence of overweight and obesity increased (respectively, from 38.5% to 53.3%; from 9.8% to 17.2%).
Conclusion
An important change in the population’s sociodemographic profile was noted. There are also favorable changes regarding the investigated aspects of food consumption, without these being sufficient to prevent the significant increase in the prevalence of overweight and obesity in the population.

References

World Health Organization. Noncomummunicable Diseases (NCD) Country Profiles 2018. Geneva: Organization; 2018 [cited 2020 Sept 10]. Available from: https://apps.who.int/iris/handle/10665/274512

Isaranuwatchai W, Teerawattananon Y, Archer RA, Luz A, Sharma M, Rattanavipapong W, et al. Prevention of non-communicable disease: best buys, wasted buys, and contestable buys. Bmj. 2020;368:m141. https://doi.org/10.1136/bmj.m141

Malta DC, Silva MMA, Moura L, Morais NOL. A implantação do Sistema de Vigilância de Doenças Crônicas Não Transmissíveis no Brasil, 2003 a 2015: alcances e desafios. Rev Bras Epidemiol. 2017;20(4):661-75. https://doi.org/10.1590/1980-5497201700040009

Ministério da Saúde (Brasil). A vigilância, o controle e a prevenção das doenças crônicas não-transmissíveis: DCNT no contexto do Sistema Único de Saúde brasileiro. Brasília: Organização Pan-Americana da Saúde; 2005.

Ministério da Saúde (Brasil). Plano de Ações Estratégicas para o Enfrentamento das Doenças Crônicas Não Transmissíveis (DCNT) no Brasil 2011-2022. Brasília: Ministério; 2011.

Malta DC, Oliveira TP, Santos MAS, Andrade SSCA, Silva MMA. Avanços do Plano de Ações Estratégicas para o Enfrentamento das Doenças Crônicas não Transmissíveis no Brasil, 2011-2015. Epidemiol Serv Saúde. 2016;25(2):373-90. https://doi.org/10.5123/s1679-49742016000200016

Câmara Interministerial de Segurança Alimentar e Nutricional (Brasil). II Plano Nacional de Segurança Alimentar e Nutricional: PLANSAN 2016-2019. Brasília: Câmara; 2018 [citado 18 jul 2019]. Disponível em: http://www.mds.gov.br/webarquivos/arquivo/seguranca_alimentar/caisan/Publicacao/Caisan_Nacional/BalancoPLANSAN2016_2019.pdf

Câmara Interministerial de Segurança Alimentar e Nutricional. Estratégia Intersetorial de Prevenção e Controle da Obesidade: recomendações para estados e municípios. Brasília: Câmara; 2014. Disponível em: http://www.mds.gov.br/webarquivos/publicacao/seguranca_alimentar/estrategia_prevencao_obesidade.pdf

Instituto Brasileiro de Geografia e Estatística. Brasil em síntese: Minas Gerais, Belo Horizonte: panorama. Rio de Janeiro: Instituto; 2017 [citado 18 Jul. 2019]. Disponível em: https://cidades.ibge.gov.br/brasil/mg/belo-horizonte/panorama.

Fernandes AP, Andrade ACS, Costa DAS, Dias MAS, Malta DC, Caiaffa WT. Programa Academias da Saúde e a promoção da atividade física na cidade: a experiência de Belo Horizonte, MG, Brasil. Ciênc Saúde Coletiva. 2017;22(12):3903-14. https://doi.org/10.1590/1413-812320172212.25282017

Sá GBAR, Dornelles GC, Cruz KG, Amorim RCA, Andrade SSCA, Oliveira TP, et al. O Programa Academia da Saúde como estratégia de promoção da saúde e modos de vida saudáveis: cenário nacional de implementação. Ciênc Saúde Coletiva. 2016;21(6):1849-60. https://doi.org/10.1590/1413-81232015216.09562016

Lopes ACS, Menezes MC, Araujo ML. O ambiente alimentar e o acesso a frutas e hortaliças: Uma metrópole em perspectiva. Saúde Soc. 2017;26(3):764-73. https://doi.org/10.1590/s0104-12902017168867

Oliveira MS, Lacerda LNL, Santos LC, Lopes ACS, Sette Câmara AMC, Menzel HJK, et al. Consumo de frutas e hortaliças e as condições de saúde de homens e mulheres atendidos na atenção primária à saúde. Ciênc Saúde Coletiva. 2015;20(8):2312-22. https://doi.org/10.1590/1413-81232015208.18272014

Bedeschi LB, Lopes ACS, Santos LC. Stages of change and factors associated with misperceived eating behavior in obese individuals. Rev Nutr. 2016;29(1):33-42. https://doi.org/10.1590/1678-98652016000100004

Andrade RG, Chaves OC, Costa DAS, Andrade ACS, Bispo S, Felicissimo MF, et al. Excesso de peso em homens e mulheres residentes em área urbana: fatores individuais e contexto socioeconômico. Cad Saude Publica. 2015;31:S148-58. https://doi.org/10.1590/0102-311X00102714

Ministério da Saúde (Brasil). Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2018. Brasília: Ministério; 2019.

World Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation. Geneva: Organization; 2003 [cited 2019 July18]. Available from: https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf?sequence=1

Riley L, Guthold R, Cowan M, Savin S, Bhatti L, Armstrong T, et al. The World Health Organization STEPwise approach to noncommunicable disease risk-factor surveillance: methods, challenges, and opportunities. Am J Public Health. 2016;106(1):74-8. https://doi.org/10.2105/AJPH.2015.302962

Pickens CM, Pierannunzi C, Garvin W, Town M. Surveillance for certain health behaviors and conditions among states and selected local areas: behavioral risk factor surveillance system, United States, 2015. Morb Mortal Wkly Rep Surveill Summ. 2018;67(9):1-90. https://doi.org/10.15585/mmwr.ss6709a1

World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva: Organization; 2013 [cited 2019 July 18]. Available from: https://apps.who.int/iris/bitstream/handle/10665/94384/9789241506236_eng.pdf?sequence=1

World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Geneva: Organization; 2000 [cited 2019 July 18]. Available from: https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/

Antunes JLF, Cardoso MRA. Uso da análise de séries temporais em estudos epidemiológicos. Epidemiol Serv Saude 2015;24(3):565-76. https://doi.org/10.5123/S1679-49742015000300024

Stata Corporation. Stata Statistical Software. Release 14. [software] College Station: Stata Corporation LP; 2015.24. Silva LES, Claro RM. Tendências temporais do consumo de frutas e hortaliças entre adultos nas capitais brasileiras e Distrito Federal, 2008-2016. Cad Saúde Pública. 2019;35(5):2008-16. https://doi.org/10.1590/0102-311x00023618

NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377-96. https://doi.org/10.1016/S0140-6736(16)30054-X

Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231-40. https://doi.org/10.1016/S2213-8587(19)30026-9

Ameye H, Swinnen J. Obesity, income and gender: the changing global relationship. Glob Food Sec. 2019;23:267-81. https://doi.org/10.1016/j.gfs.2019.09003

Longo-Silva G, Silveira JAC, Menezes RCE, Marinho PM, Epifânio SBO, Brebal KMM, et al. Tendência temporal e fatores associados ao consumo de carnes gordurosas na população brasileira entre de 2007 a 2014. Ciênc Saúde Coletiva. 2019;24(3):1175-88. https://doi.org/10.1590/1413-81232018243.0819201

Figueiredo N, Maia EG, Silva LES, Granado FS, Claro RM. Trends in sweetened beverages consumption among adults in the Brazilian capitals, 2007-2016. Public Health Nutr. 2018;21(18):3307–3317. http://dx.doi.org/10.1017/S1368980018002161

Bortolini GA, Oliveira TFV, Silva SA, Santin RDC, Medeiros OL, Spaniol AM, et al. Ações de alimentação e nutrição na atenção primária à saúde no Brasil. Rev Panam Salud Publica. 2020;44:e39. https://doi.org/10.26633/RPSP.2020.39

Pessoa MC, Mendes LL, Gomes CS, Martins PA, Velasquez-Melendez G. Food environment and fruit and vegetable intake in a urban population: a multilevel analysis. Bmc Public Health. 2015;15:1012. https://doi.org/10.1186/s12889-015-2277-1

Carmo AS, Sousa TM, Silva CM, Silva AR, Silva AC, Lacerda AT, et al. Nutritional intervention based on ludic activities: effect on eating habits and nutritional status of Brazilian schoolchildren. J Food Nutr Res. 2018;6(5):302-05. https://doi.org/10.12691/jfnr-6-5-4

Mendonça RD, Pimenta AM, Gea A, Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes ACS, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra follow-up (SUN) cohort study. Am J Clin Nutr. 2016;104(5):1433-40. https://doi.org/10.3945/ajcn.116.135004

Passos CM, Maia EG, Levy RB, Martins APB, Claro RM. Association between the price of ultra-processed foods and obesity in Brazil. Nutr Metab Cardiovasc Dis. 2020;30(4):589-98. https://doi.org/10.1016/j.numecd.2019.12.011

Khandpur N, Mais LA, Sato PM, Martins APB, Spinillo CG, Rojas CFU, et al. Choosing a front-of-package warning label for Brazil: a randomized, controlled comparison of three different label designs. Food Res Int. 2019;121:854-61. https://doi.org/10.1016/j.foodres.2019.01.008

Guimarães JS, Mais LA, Leite FHM, Horta PM, Santana MO, Martins APB, Claro RM. Ultra-processed food and beverage advertising on Brazilian television by International Network for Food and Obesity/Non-Communicable Diseases Research, Monitoring and Action Support benchmark. Public Health Nutr. 2020;23(15):2657-62. https://doi.org/10.1017/S1368980020000518

Menezes MC, Costa BV, Oliveira CD, Lopes AC. Local food environment and fruit and vegetable consumption: an ecological study. Prev Med Rep. 2016;5:13-20. https://doi.org/10.1016/j.pmedr.2016.10.015

Pimentel T. Pesquisa da UFMG aponta que periferia de BH tem ‘desertos alimentares’, áreas onde não há oferta de comida saudável. G1. 24 nov 2019 [citado 8 nov. 2019]. Disponível em: https://g1.globo.com/mg/minas-gerais/noticia/2019/11/24/pesquisa-da-ufmg-aponta-que-periferia-de-bh-tem-desertos-alimentares-areas-onde-nao-haoferta-de-comida-saudavel.ghtml

Fernandes AP, Andrade ACS, Ramos CGC, Friche AAL, Dias MAS, Xavier CC, et al. Leisure-time physical activity in the vicinity of Academias da Cidade Program in Belo Horizonte, Minas Gerais State, Brazil: the impact of a health promotion program on the community. Cad Saúde Pública. 2015;31(Suppl1):195-207. https://doi.org/10.1590/0102-311X00104514

Souza MFM, Malta DC, França EB, Barreto ML. Transição da saúde e da doença no Brasil e nas Unidades Federadas durante os 30 anos do Sistema Único de Saúde. Ciênc Saúde Coletiva. 2018;23(6):1737-50. https://doi.org/10.1590/1413-81232018236.04822018

Enes CC, Nucci LB. Gender and schooling inequalities in risk and protective factors for chronic diseases among Brazilian adults. J Public Health. 2018;40(3):e211-8. https://doi.org/10.1093/pubmed/fdx183

Ferreira APS, Szwarcwald CL, Damacena GN. Prevalência e fatores associados da obesidade na população brasileira: estudo com dados aferidos da Pesquisa Nacional de Saúde, 2013. Rev Bras. Epidemiol. 2019;22:e190024. https://doi.org/10.1590/1980-549720190024

Bennett GG, Wolin KY, Duncan DT. Social Determinants of Obesity. In: Hu, FB. Obesity Epidemiology. New York: Oxforxd, 2008.

Jaime PC, Delmuè DCC, Campello T, Oliveira e Silva D, Santos LMP. Um olhar sobre a agenda de alimentação e nutrição nos trinta anos do Sistema Único de Saúde. Ciênc Saúde Coletiva. 2018;3(6):1829-36. https://doi.org/10.1590/1413-81232018236.05392018

Mendes LL, Campos SF, Malta DC, Bernal RTI, Sá NNB, Velásquez-Meléndez G. Validade e reprodutibilidade de marcadores do consumo de alimentos e bebidas de um inquérito telefônico realizado na cidade de Belo Horizonte (MG), Brasil. Rev Bras Epidemiol. 2011;14(Suppl1):80-9. https://doi.org/10.1590/S1415-790X2011000500009

Moreira NF, Luz VG, Moreira CC, Pereira RA, Sichieri R, Ferreira MG, et al. Self-reported weight and height are valid measures to determine weight status: results from the Brazilian National Health Survey (PNS 2013). Cad Saúde Pública. 2018;34(5):e00063917. https://doi.org/10.1590/0102-311X00063917

Downloads

Published

2022-06-22

How to Cite

Sá da SILVA, L. E., Marquezine CALDEIRA, T. C., & Moreira CLARO, R. (2022). Food consumption, overweight, obesity, and sociodemographic profile in a Brazilian capital: a time trend analysis between 2006 and 2018. Brazilian Journal of Nutrition, 34, 1–11. Retrieved from https://puccampinas.emnuvens.com.br/nutricao/article/view/6021

Issue

Section

ORIGINAL ARTICLE