Interrelationships between obesity, blood pressure and metabolic profile in climacteric women
Keywords:
Blood pressure, Climacteric, Metabolic profile, ObesityAbstract
Objective
This study aimed to evaluate the interrelationships between obesity, blood pressure and metabolic profile in climacteric women.
Methods
This is a cross-sectional study with a random sample of 874 women, aged 40 to 65 years, assisted in Family Health Strategies units in Montes Claros, Minas Gerais, Brazil. A structural equation model was used to assess the interrelationships between obesity, blood pressure and metabolic profile, adjusted for age. The variables blood pressure, obesity and metabolic profile were treated as constructs, which measurement models were developed using confirmatory factor analysis.
Results
It was observed that age has a positive and significant effect on blood pressure (β=0.20; p<0.001) and obesity (β=0.10; p=0.004). There was a direct and positive effect of obesity on blood pressure (β=0.26; p<0.001) and on the metabolic profile (β=0.10; p=0.037), adjusted for physical activity.
Conclusion
The simultaneous analysis of the relationships between age, obesity, blood pressure and metabolic profile in menopausal women suggests that, ageing has an effect on the increase of obesity and blood pressure, just as obesity increases blood pressure and changes the metabolic profile.
References
North American Menopause Society. Guia da Menopausa. 7a. ed. São Paulo: Associação Brasileira Climatério; 2013.
Muka T, Oliver-Williams C, Kunutsor S, Laven JS, Fauser BC, Chowdhury R, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and allcause mortality: a systematic review and meta-analysis. Jama Cardiol. 2016;1(7):767-76.
Thurston RC, Chang Y, Barinas-Mitchell E, Jennings, JR, Känel RV, Landsittel DP, et al. Physiologically assessed hot flashes and endothelial function among midlife women. Menopause. 2017;24(8):886-93.
Marques MS, Freitas RF, Popoff DAV, Oliveira FPSL, Moreira MHR, Drummond AMA, et al. Health conditions associated with overweight in climacteric women. Plos One. 2019;14(12):e0218497. https://doi.org/10.1371/journal.pone.0218497.s001
Wang HH, Lee DK, Liu M, Portincasa P, Wang DQ. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr. 2020;23(3):189-230. https://doi.org/10.5223/pghn.2020.23.3.189
Lockard B, Earnest CP, Oliver J, Goodenough C, Rasmussen C, Greenwood M, et al. Retrospective analysis of proteinand carbohydrate-focused diets combined with exercise on metabolic syndrome prevalence in overweight and obese women. Metab Syndr Relat Disord. 2016;14(4):228-37.
Adams-Campbell LL, Dash C, Kim BH, Hicks J, Makambi K, Hagberg J. Cardiorespiratory fitness and metabolic syndrome in postmenopausal African-American women. Int J Sports Med. 2016;37(4):261-6.
Wu HF, Tam T, Jin L, Lao XQ, Chung RY, Su XF, et al. Age, gender, and socioeconomic gradients in metabolic syndrome: biomarker evidence from a large sample in Taiwan, 2005-2013. Ann Epidemiol. 2017;27(5):315-22.
Tran BT, Jeong BY, Oh JK. The prevalence trend of metabolic syndrome and its components and risk factors in Korean adults: results from the Korean National Health and Nutrition Examination Survey 2008-2013. Bmc Public Health. 2017;17(71):1-8.
Park SA, Park WC, Kwon YJ, Shim JY. Association between the eating family meal and the prevalence of metabolic syndrome using data from Korea national health and nutrition examination survey (2007-2012). Korean J Family Med. 2017;38(3):130-4.
Lekoubou A, Ovbiagele B, Markovic D, Sanossian N, Towfighi A. Age, gender, and race/ethnic temporal trends in metabolic syndrome prevalence among individuals with myocardial infarction or stroke in the United States. J Neurol Sci. 2017;15(376):24-8.
Raposo L, Severo M, Barros H, Santos AC. The prevalence of the metabolic syndrome in Portugal: the PORMETS study. Bmc Public Health. 2017;17(555):1-9.
Bortoletto MSS, Souza RKT, Cabrera MAS, González AD. Síndrome metabólica, componentes e fatores associados em adultos de 40 anos ou mais de um município da Região Sul do Brasil. Cad Saúde Coletiva. 2016;24(1):32-40.
Akl LD, Valadares ALR, Gomes DC, Pinto-Neto AM, Costa-Paiva L. Factors associated with metabolic syndrome in middle-aged women with and without HIV. J Metab Syndr. 2016;5(2):1-5.
Kang Y, Kim J. Soft drink consumption is associated with increased incidence of the metabolic syndrome only in women. Br J Nutr. 2017;117(2):315-24.
Zurlo A, Veronese N, Giantin V, Maselli M, Zambon S, Maggi S, et al. High serum uric acid levels increase the risk of metabolic syndrome in elderly women: The PRO.V.A study. Nutr Metab Cardiovasc Dis. 2016;26(1):27-35.
Marôco J. Análise de equações estruturais: fundamentos teóricos, software & aplicações. 2a. ed. Lisboa: Report Number; 2014.
Silva NN. Amostragem probabilística: um curso introdutório. 2a. ed. São Paulo: Editora da Universidade de São Paulo; 2004.
Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira C, et al. Questionário Internacional de Atividade Física (IPAQ): estudo de validade e reprodutibilidade no Brasil. Rev Bras Ativ Fís Saúde. 2001;6(2):5-12.
Sociedade Brasileira de Cardiologia. VII Diretrizes Brasileiras de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3)3:1-83.
Chedraui P, San Miguel G, Vintimilla-Siguenza I, Villacreses D, Romero-Huete L, Dominguez A, et al. The metabolic syndrome and its components in postmenopausal women. Gynecol Endocrinol. 2013;29(6):563-8.
Yu TY, Jee JH, Bae JC, Jin SM, Baek JH, Lee MK, et al. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition. Metabolism. 2016;65(4):432-40.
Karns R, Succop P, Zhang G, Sun G, Indugula SR, Havas-Augustin D, et al. Modeling metabolic syndrome through structural equations of metabolic traits, comorbid diseases, and GWAS variants. Obesity. 2013;21(12):745-54.
Huo D, Wang W, Li X, Gao Q, Wu L, Luo Y, et al. Evaluation of two single-factor models of metabolic syndrome: a confirmatory factor analysis for an adult population in Beijing. Lipids Health Dis. 2013;12(61):1-7.
Hair JF, Anderson RE, Tatham RL, Black WC. Análise multivariada de dados. 5a. ed. Porto Alegre: Bookman; 2005.
Kline RB. Principles and practice of structural equation modeling. 2nd. ed. New York: Guilford Press; 2005.
Vieira PRC, Ribas JR. Análise multivariada com o uso do SPSS. Rio de Janeiro: Editora Ciência Moderna Ltda; 2011.
Viitasalo A, Lakka TA, Laaksonen DE, Savonen K, Lakka HM, Hassinen M, et al. Validation of metabolic syndrome score by confirmatory factor analysis in children and adults and prediction of cardiometabolic outcomes in adults. Diabetologia. 2014;57(5):940-9.
Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol. 2019;11(10):137.
Seo SK, Yun BH, Chon SJ, Lee YJ, Han EJ, Park JH, et al. Association of serum ferritin levels with metabolic syndrome and subclinical coronary atherosclerosis in postmenopausal Korean women. Clin Chim Acta. 2015;1(438):62-6.
Medeiros MMC, Oliveira IMAX, Ribeiro ATM. Prevalence of metabolic syndrome in a cohort of systemic lupus erythematosus patients from Northeastern Brazil: association with disease activity, nephritis, smoking, and age. Rheumatol Int. 2016;36(1):117-24.
Singh S, Shankar R, Singh GP. Prevalence and associated risk factors of hypertension: a cross-sectional study in urban Varanasi. Inter J Hypert. 2017;2017:1-10.
Song L, Shen L, Li H, Liu B, Zheng X, Zhang L, et al. Age at natural menopause and hypertension among middle-aged and older Chinese women. J Hypertens. 2018;36(3):594-600.
Mikael LR, Paiva AMG, Gomes MM, Sousa ALL, Jardim PCBV, Vitorino PVO, et al. Envelhecimento vascular e rigidez arterial. Arq Bras Cardiol. 2017;109(3):253-8.
Khanal MK, Dhungana RR, Bhandari P, Gurung Y, Paudel KN. Prevalence, associated factors, awareness, treatment, and control of hypertension: findings from a cross sectional study conducted as a part of a community based intervention trial in Surkhet, Mid-western region of Nepal. Plos One. 2017;12(10):e0185806. https://doi.org/10.1371/journal.pone.0185806
Stamatelopoulos K, Apostolakis M, Augoulea A, Paschou SA, Armeni E, Panoulis K, et al. Predictors of incident hypertension in healthy non-diabetic postmenopausal women with normal renal function. Gynecol Endocrinol. 2019;35(12):1063-6.
Yun BH, Chon SJ, Lee YJ, Han EJ, Cho S, Choi YS, et al. Association of metabolic syndrome with coronary atherosclerosis in non-diabetic postmenopausal women. Climacteric. 2015;18(2):284-9.
Kaldmäe M, Zemtsovskaja G, Abina J, Land T, Viigimaa M. Prevalence of cardiovascular disease risk factors in Tallinn, Estonia. Medicina (Kaunas). 2017;53(4):268-76. https://doi.org/10.1016/j.medici.2017.07.002
Fogaça e Silva EM, Theodoro H, Mendes KG, Anselmo Olinto MT. Prevalência de obesidade em mulheres na pós-menopausa atendidas em um ambulatório no sul do Brasil. Rasbran. 2019;10(1):46-52.
Ambikairajah A, Walsh E, Tabatabaei-Jafari H, Cherbuin N. Fat mass changes during menopause: a metaanalysis. Am J Obstet Gynecol. 2019;221(5):393-409.e50. https://doi.org/10.1016/j.ajog.2019.04.023
Ko SH, Kim HS. Distúrbios metabólicos lipídicos associados à menopausa e alimentos benéficos para mulheres na pós-menopausa. Nutrients. 2020;12(1):202.
Udo T, McKee SA, White MA, Masheb RM, Barnes RD, Grilo CM. Menopause and metabolic syndrome in obese individuals with binge eating disorder. Eat Behav. 2014;15(2):182-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vivianne Margareth Chaves Pereira REIS, Rafael Silveira FREIRE, Maria Fernanda Santos Figueiredo BRITO, Lucinéia de PINHO, Josiane Santos Brant ROCHA, Marise Fagundes SILVEIRA
This work is licensed under a Creative Commons Attribution 4.0 International License.