Vitamin C decreases the obesogenic and hyperglycemic effect of invert sugar in prediabetic rats

Authors

  • Patrícia MOLZ Universidade de Santa Cruz do Sul
  • Alana Nunes RAEL Universidade de Santa Cruz do Sul
  • Maiara de Queiroz FISCHER Universidade de Santa Cruz do Sul
  • Luana Beatriz LIMBERGER Universidade de Santa Cruz do Sul
  • Daniel PRÁ Universidade de Santa Cruz do Sul
  • Silvia Isabel Rech FRANKE Universidade de Santa Cruz do Sul

Keywords:

Hyperglycemia, Obesity, Prediabetes states, Vitamin C

Abstract

Objective
To evaluate whether vitamin C can help to prevent obesity and hyperglycemia in Wistar rats treated with excess invert sugar to induce prediabetes.

Methods
One hundred-day-old Male Wistar rats with a mean weight of 336.58±23.43g were randomly assigned to the following groups: (1) control, receiving water (C); (2) invert sugar control, receiving a 32% watery solution of invert sugar; (3) vitamin C control, receiving a watery solution of vitamin C (60mg/L), and (4) vitamin C plus invert sugar, receiving a watery solution of vitamin C and invert sugar. All animals had access to chow andwater ad libitum and were treated for 17 weeks. Prediabetes was assessed according to two criteria: obesity (based on body mass indexand peritoneal fat content) and impaired glucose tolerance (assessed by the
intraperitoneal glucose tolerance test and expressed as area under the curve).

Results
Group invert sugar control gained significantly more weight (p=0.035) and visceral fat (p<0.001) than groups vitamin C control and vitamin C plus invert sugar. Consequently, groups vitamin C control and vitamin C plus invert sugar had gained as little body mass index as group C by the end of the experiment. Vitamin C decreased the fasting glycemia of both groups supplemented with vitamin C and normalized the glucose tolerance of group vitamin C plus invert sugar, whose area under the curve matched that of group C.

Conclusion
Vitamin C has anti-obesogenic and glycemia-lowering effects in Wistar rats, which might be promising to prediabetics. Future studies are needed to understand the anti-obesogenic and anti-hyperglycemic mechanisms of vitamin C in prediabetes.

References

Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem. 2013;28(4):314-28. https://doi.org/10.1007/s12291-013-0375-3

Franke SI, Pra D, Silva J, Erdtmann B, Henriques JA. Possible repair action of Vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res. 2005;583(1):75-84.

https://doi.org/10.1016/j.mrgentox.2005.03.001

Garcia-Diaz DF, Lopez-Legarrea P, Quintero P, Martinez JA. Vitamin C in the treatment and/or prevention of obesity. J Nutr Sci Vitaminol. 2014;60(6):367-79. https://doi.org/10.3177/jnsv.60.367

Choi MK, Song HJ, Paek YJ, Lee HJ. Gender differences in the relationship between vitamin C and abdominal obesity. Int J Vitam Nutr Res. 2013;83(6):377-84. https://doi.org/10.1024/0300-9831/a000179

Al-Shamsi M, Amin A, Adeghate E. The effect of vitamin C on the metabolic parameters of experimental diabetes Mellitus. Am J Pharmacol Toxicol. 2007;2(1):4-9. https://doi.org/10.3844/ajptsp.2007.4.9

Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med. 2012;52(1):46-58. https://doi.org/10.1016/j.freeradbiomed.2011.10.441

Rafighi Z, Shiva A, Arab S, Mohd Yousof R. Association of dietary vitamin C and e intake and antioxidant enzymes in type 2 diabetes Mellitus patients. Glob J Health Sci. 2013;5(3):183-7. https://doi.org/10.5539/gjhs.v5n3p183

Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. Am Coll Cardio Found. 2012;59(7):635-43. https://doi.org/10.1016/j.jacc.2011.08.080

Pereira CS, Molz P, Palazzo RP, Freitas TA, Maluf SW, Horta JA, et al. DNA damage and cytotoxicity in adult subjects with prediabetes. Mutat Res.2013;753(2):76-81. https://doi.org/10.1016/j.mrgentox.2013.02.002

Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA.2012;308(11):1150-9. https://doi.org/10.1001/2012.jama.11132

Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol Behav. 2010;100(1):47-54. https://doi.org/10.1016/j.physbeh.2010.01.036

Malik VS, Hu FB. Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr Diab Rep. 2012;12(2):195-203. https://doi.org/10.1007/s11892-012-0259-6

Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. Starches, sugars and obesity. Nutrients. 2011;3(3):341-69. https://doi.org/10.3390/nu3030341

Sheludiakova A, Rooney K, Boakes RA. Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat. Eur J Nutr. 2012; 51(4):445-54. https://doi.org/10.1007/s00394-011-0228-x

Hafizur RM, Raza SA, Chishti S, Shaukat S, Ahmed A. A ‘Humanized’rat model of pre-diabetes by high fat diet-feeding to weaning wistar rats. Integr Obesity Diabetes. 2015;1(2):44-8. https://doi.org/10.15761/IOD.1000111

Yokoi N, Beppu M, Yoshida E, Hoshikawa R, Hidaka S, Matsubara T, et al. Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes. Metabolomics. 2015;11(5):1277-86. https://doi.org/10.1007/s11306-015-0784-9

Glendinning JI, Breinager L, Kyrillou E, Lacuna K, Rocha R, Sclafani A. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav. 2010;101(3):331-43. https://doi.org/10.1016/j.physbeh.2010.06.003

Monsen ER. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc. 2000;100:637-40. https://doi.org/10.1016/S0002-8223(00)00189-9

Wade CE, Miller MM, Baer LA, Moran MM, Steele MK, Stein TP. Body mass, energy intake, and water consumption of rats and humans during space flight. Nutrition. 2002;18(10):829-36. https://doi.org/10.1016/S0899-9007(02)00914-0

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111-9. https://doi.org/10.1258/002367707779399518

Cinti S. The adipose organ. Prostaglandins Leukot Essent Fattys Acids. 2005;73(1):9-15. https://doi.org/10.1016/j.plefa.2005.04.010

McClain D. Validation of models of cardiovascular disease in diabete. In: Animal models of diabetic complications consortium protocols. Augusta: Georgia Health Sciences University; 2003 [cited 2014 Dec 12]. http://www.diacomp.org/shared/document.aspx?id=11&docType=Protocol

Chinachoti P. Carbohydrates: Functionality in foods.Am J Clin Nutr. 1995;61(4Suppl.):922S-9S.

Hansson A, Andersson J, Leufven A. The effect of sugars and pectin on flavour release from a soft drink-related model system. Food Chem. 2001;72(3):363-8. https://doi.org/10.1016/S0308-8146(00)00243-0

Lehnen AM, Rodrigues B, Irigoyen MC, De Angelis K, Schaan BD. Cardiovascular changes in animal models of metabolic syndrome. J Diabetes Res. 2013;2013:761314. https://doi.org/10.1155/2013/761314

He Q, Xiao L, Xue G, Wong S, Ames SL, Schembre SM, et al. Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control. Nutr J. 2014;13(2014):92. https://doi.org/10.1186/1475-2891-13-92

Hu FB. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011; 34(6):1249-57. https://doi.org/10.2337/dc11-0442

Olsen NJ, Andersen LB, Wedderkopp N, Kristensen PL, Heitmann BL. Intake of liquid and solid sucrose in relation to changes in body fatness over 6 years among 8- to 10-year-old children: The European Youth Heart Study. Obesity Facts. 2012;5(4):506-12. https://doi.org/10.1159/000341631

Leffa DD, Silva J, Daumann F, Dajori AL, Longaretti LM, Damiani AP, et al. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutat Res. 2014;770:144-52. https://doi.org/10.1016/j.mrfmmm.2013.11.005

Carillon J, Romain C, Bardy G, Fouret G, FeilletCoudray C, Gaillet S, et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: Improvement by dietary supplementation with a melon superoxide dismutase. Free Radic Biol Med. 2013;65:254-61. https://doi.org/10.1016/j.freeradbiomed.2013.06.022

Bonnefont-Rousselot D. Obesity and oxidative stress: Potential roles of melatonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord Drug Targets. 2014;14(3):159-68. https://doi.org/10.2174/1871530314666140604151452

Christie-David DJ, Girgis CM, Gunton JE. Effects of vitamins C and D in type 2 diabetes Mellitus. J Nutr Diet Supp. 2015;2015(7):21-8. https://doi.org/10.2147/NDS.S52022

Khodaeian M, Tabatabaei-Malazy O, Qorbani M, Farzadfar F, Amini P, Larijani B. Effect of vitamins C and E on insulin resistance in diabetes: A metaanalysis study. Eur J Clin Invest. 2015;45:1161-74. https://doi.org/10.1016/j.freeradbiomed.2013.06.022

Downloads

Published

2023-03-16

How to Cite

MOLZ, P. ., Nunes RAEL, A. ., de Queiroz FISCHER, M. ., LIMBERGER, L. B., PRÁ, D., & Rech FRANKE, S. I. (2023). Vitamin C decreases the obesogenic and hyperglycemic effect of invert sugar in prediabetic rats. Brazilian Journal of Nutrition, 30(1). Retrieved from https://puccampinas.emnuvens.com.br/nutricao/article/view/7821

Issue

Section

ORIGINAL ARTICLE