Vitamina C reduz o efeito obesogênico e hiperglicemiante do açúcar invertido em ratos pré-diabéticos

Autores

  • Patrícia MOLZ Universidade de Santa Cruz do Sul
  • Alana Nunes RAEL Universidade de Santa Cruz do Sul
  • Maiara de Queiroz FISCHER Universidade de Santa Cruz do Sul
  • Luana Beatriz LIMBERGER Universidade de Santa Cruz do Sul
  • Daniel PRÁ Universidade de Santa Cruz do Sul
  • Silvia Isabel Rech FRANKE Universidade de Santa Cruz do Sul

Palavras-chave:

Hiperglicemia, Obesidade, Estado pré-diabétes, Vitamina C

Resumo

Objetivo
Avaliar o efeito da vitamina C na prevenção da obesidade e da hiperglicemia, em ratos Wistar tratados com sobrecarga de açúcar invertido, para induzir o estágio de pré-diabetes.

Métodos
Ratos Wistar machos (100 dias de vida e peso médio de 336,58±23,43g) foram distribuídos aleatoriamente nos grupos: (1) controle água; (2) controle açúcar invertido, recebendo 32% de açúcar invertido diluído em água; (3) controle vitamina C, recebendo vitamina C (60mg/L) diluído em água e, (4) açúcar invertido+vitamina C, tratados com vitamina C e açúcar invertido diluídos em água. Todos os animais receberam ração e água ad libitum, sendo tratados por 17 semanas. O estágio de pré-diabetes foi avaliado considerando-se obesidade (índice de massa corporal e quantidade de gordura peritoneal) e tolerância à glicose diminuída (Teste de Tolerância à Glicose Intraperitoneal, expresso pela área sob a curva).

Resultados
Os grupos vitamina C e açúcar invertido + vitamina C apresentaram redução significativa do peso (p=0,035) e da gordura visceral (p<0,001) em relação ao grupo açúcar invertido. Consequentemente, verificou-se uma diminuição do índice de massa corporal dos grupos vitamina C e açúcar invertido+vitamina C, assemelhandose ao do grupo C no final do experimento. A vitamina C reduziu a glicemia de jejum dos animais de ambos os grupos suplementados com Vitamina C e normalizou a tolerância à glicose do grupo açúcar invertido+vitamina C, igualando-se a área sob a curva a do grupo C.

Conclusão
A suplementação de vitamina C teve efeito anti-obesogênico e hipoglicemiante, mostrando-se promissora no pré-diabetes. Estudos futuros são necessários para entender os mecanismos anti-obesogênicos e anti-hiperglicemiantes da vitamina C no pré-diabetes.

Referências

Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem. 2013;28(4):314-28. https://doi.org/10.1007/s12291-013-0375-3

Franke SI, Pra D, Silva J, Erdtmann B, Henriques JA. Possible repair action of Vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res. 2005;583(1):75-84.

https://doi.org/10.1016/j.mrgentox.2005.03.001

Garcia-Diaz DF, Lopez-Legarrea P, Quintero P, Martinez JA. Vitamin C in the treatment and/or prevention of obesity. J Nutr Sci Vitaminol. 2014;60(6):367-79. https://doi.org/10.3177/jnsv.60.367

Choi MK, Song HJ, Paek YJ, Lee HJ. Gender differences in the relationship between vitamin C and abdominal obesity. Int J Vitam Nutr Res. 2013;83(6):377-84. https://doi.org/10.1024/0300-9831/a000179

Al-Shamsi M, Amin A, Adeghate E. The effect of vitamin C on the metabolic parameters of experimental diabetes Mellitus. Am J Pharmacol Toxicol. 2007;2(1):4-9. https://doi.org/10.3844/ajptsp.2007.4.9

Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med. 2012;52(1):46-58. https://doi.org/10.1016/j.freeradbiomed.2011.10.441

Rafighi Z, Shiva A, Arab S, Mohd Yousof R. Association of dietary vitamin C and e intake and antioxidant enzymes in type 2 diabetes Mellitus patients. Glob J Health Sci. 2013;5(3):183-7. https://doi.org/10.5539/gjhs.v5n3p183

Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. Am Coll Cardio Found. 2012;59(7):635-43. https://doi.org/10.1016/j.jacc.2011.08.080

Pereira CS, Molz P, Palazzo RP, Freitas TA, Maluf SW, Horta JA, et al. DNA damage and cytotoxicity in adult subjects with prediabetes. Mutat Res.2013;753(2):76-81. https://doi.org/10.1016/j.mrgentox.2013.02.002

Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA.2012;308(11):1150-9. https://doi.org/10.1001/2012.jama.11132

Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol Behav. 2010;100(1):47-54. https://doi.org/10.1016/j.physbeh.2010.01.036

Malik VS, Hu FB. Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr Diab Rep. 2012;12(2):195-203. https://doi.org/10.1007/s11892-012-0259-6

Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. Starches, sugars and obesity. Nutrients. 2011;3(3):341-69. https://doi.org/10.3390/nu3030341

Sheludiakova A, Rooney K, Boakes RA. Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat. Eur J Nutr. 2012; 51(4):445-54. https://doi.org/10.1007/s00394-011-0228-x

Hafizur RM, Raza SA, Chishti S, Shaukat S, Ahmed A. A ‘Humanized’rat model of pre-diabetes by high fat diet-feeding to weaning wistar rats. Integr Obesity Diabetes. 2015;1(2):44-8. https://doi.org/10.15761/IOD.1000111

Yokoi N, Beppu M, Yoshida E, Hoshikawa R, Hidaka S, Matsubara T, et al. Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes. Metabolomics. 2015;11(5):1277-86. https://doi.org/10.1007/s11306-015-0784-9

Glendinning JI, Breinager L, Kyrillou E, Lacuna K, Rocha R, Sclafani A. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav. 2010;101(3):331-43. https://doi.org/10.1016/j.physbeh.2010.06.003

Monsen ER. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc. 2000;100:637-40. https://doi.org/10.1016/S0002-8223(00)00189-9

Wade CE, Miller MM, Baer LA, Moran MM, Steele MK, Stein TP. Body mass, energy intake, and water consumption of rats and humans during space flight. Nutrition. 2002;18(10):829-36. https://doi.org/10.1016/S0899-9007(02)00914-0

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111-9. https://doi.org/10.1258/002367707779399518

Cinti S. The adipose organ. Prostaglandins Leukot Essent Fattys Acids. 2005;73(1):9-15. https://doi.org/10.1016/j.plefa.2005.04.010

McClain D. Validation of models of cardiovascular disease in diabete. In: Animal models of diabetic complications consortium protocols. Augusta: Georgia Health Sciences University; 2003 [cited 2014 Dec 12]. http://www.diacomp.org/shared/document.aspx?id=11&docType=Protocol

Chinachoti P. Carbohydrates: Functionality in foods.Am J Clin Nutr. 1995;61(4Suppl.):922S-9S.

Hansson A, Andersson J, Leufven A. The effect of sugars and pectin on flavour release from a soft drink-related model system. Food Chem. 2001;72(3):363-8. https://doi.org/10.1016/S0308-8146(00)00243-0

Lehnen AM, Rodrigues B, Irigoyen MC, De Angelis K, Schaan BD. Cardiovascular changes in animal models of metabolic syndrome. J Diabetes Res. 2013;2013:761314. https://doi.org/10.1155/2013/761314

He Q, Xiao L, Xue G, Wong S, Ames SL, Schembre SM, et al. Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control. Nutr J. 2014;13(2014):92. https://doi.org/10.1186/1475-2891-13-92

Hu FB. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011; 34(6):1249-57. https://doi.org/10.2337/dc11-0442

Olsen NJ, Andersen LB, Wedderkopp N, Kristensen PL, Heitmann BL. Intake of liquid and solid sucrose in relation to changes in body fatness over 6 years among 8- to 10-year-old children: The European Youth Heart Study. Obesity Facts. 2012;5(4):506-12. https://doi.org/10.1159/000341631

Leffa DD, Silva J, Daumann F, Dajori AL, Longaretti LM, Damiani AP, et al. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutat Res. 2014;770:144-52. https://doi.org/10.1016/j.mrfmmm.2013.11.005

Carillon J, Romain C, Bardy G, Fouret G, FeilletCoudray C, Gaillet S, et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: Improvement by dietary supplementation with a melon superoxide dismutase. Free Radic Biol Med. 2013;65:254-61. https://doi.org/10.1016/j.freeradbiomed.2013.06.022

Bonnefont-Rousselot D. Obesity and oxidative stress: Potential roles of melatonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord Drug Targets. 2014;14(3):159-68. https://doi.org/10.2174/1871530314666140604151452

Christie-David DJ, Girgis CM, Gunton JE. Effects of vitamins C and D in type 2 diabetes Mellitus. J Nutr Diet Supp. 2015;2015(7):21-8. https://doi.org/10.2147/NDS.S52022

Khodaeian M, Tabatabaei-Malazy O, Qorbani M, Farzadfar F, Amini P, Larijani B. Effect of vitamins C and E on insulin resistance in diabetes: A metaanalysis study. Eur J Clin Invest. 2015;45:1161-74. https://doi.org/10.1016/j.freeradbiomed.2013.06.022

Downloads

Publicado

16-03-2023

Como Citar

MOLZ, P. ., Nunes RAEL, A. ., de Queiroz FISCHER, M. ., LIMBERGER, L. B., PRÁ, D., & Rech FRANKE, S. I. (2023). Vitamina C reduz o efeito obesogênico e hiperglicemiante do açúcar invertido em ratos pré-diabéticos. Revista De Nutrição, 30(1). Recuperado de https://puccampinas.emnuvens.com.br/nutricao/article/view/7821

Edição

Seção

ARTIGOS ORIGINAIS