Baru nuts reduce abdominal adiposity in type 2 diabetic adults

a randomized, placebo-controlled, crossover trial

Autores/as

Palabras clave:

Body composition, Diabetes Mellitus, Type 2, Dietary modification, Nuts, Obesity managements

Resumen

Objective
This study aimed to evaluate the effect of baru nuts supplementation on body composition and metabolic profile in adults with type 2 diabetes.
Methods
This is a randomized, placebo-controlled, crossover trial with 30 adults with type 2 diabetes. The assay had two periods of 12 weeks each, with a washout period of 12 weeks between treatments. The subjects were randomized and received the two treatments in alternate periods: supplementation of 30g baru nuts or placebo. Anthropometry, body composition, blood pressure, blood sampling, food intake, and physical activity data were analyzed.
Results
Baru nut intake reduced waist circumference (p=0.032), compared to placebo group. In the intra-group analysis, baru nut intake reduced total cholesterol (p=0.012) and LDL-c (p=0.017).
Conclusion
The daily intake of baru nuts improved abdominal adiposity. Therefore, these nuts should be included in the diet to improve the health status of adults with type 2 diabetes.

Citas

Abazarfard Z, Salehi M, Keshavarzi S. The effect of almonds on anthropometric measurements and lipid profile in overweight and obese females in a weight reduction program: A randomized controlled clinical trial. J Res Med Sci. 2014;19(5):457-64.

Rock CL, Flatt SW, Pakiz B, Quintana EL, Heath DD, Rana BK, et al. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. Metabolism. 2016;65(11):1605-13. https://doi:10.1016/j.metabol.2016.07.008

Cassady BA, Hollis JH, Fulford AD, Considine RV, Mattes RD. Mastication of almonds: effects of lipid bioaccessibility, appetite, and hormone response. Am J Clin Nutr. 2009;89(3):794-800. https://doi:10.3945/ajcn.2008.26669

Ellis PR, Kendall CW, Ren Y, Parker C, Pacy JF, Waldron KW, et al. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr. 2004;80(3):604-13. https://doi:10.1093/ajcn/80.3.604

Mattes RD, Dreher ML. Nuts and healthy body weight maintenance mechanisms. Asia Pac J Clin Nutr. 2010;19(1):137-41.

Baer DJ, Gebauer SK, Novotny JÁ. Walnuts Consumed by Healthy Adults Provide Less Available Energy than Predicted by the Atwater Factors. J Nutr. 2016;146(1):9-13. https://doi:10.3945/jn.115.217372

Pasman WJ, Heimerikx J, Rubingh CM, Van Den Berg R, O’Shea M, Gambelli L, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008;20(7):10. https://doi:10.1186/1476-511X-7-10

Reis CE, Ribeiro DN, Costa NM, Bressan J, Alfenas RC, Mattes RD. Acute and second-meal effects of peanuts on glycaemic response and appetite in obese women with high type 2 diabetes risk: a randomised cross-over clinical trial. Br J Nutr. 2013;109(11):2015-23. https://doi:10.1017/S0007114512004217

Jenkins DJ, Kendall CW, Axelsen M, Augustin LS, Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol. 2000;11:49-56.

Tan SY, Dhillon J, Mattes RD. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am J Clin Nutr. 2014;100:412S-422S. https://doi:10.3945/ajcn.113.071456

Budriesi R, Vivarelli F, Canistro D, Aldini R, Babot Marquillas C, Corazza I, et al. Liver and intestinal protective effects of Castanea sativa Mill. bark extract in high-fat diet rats. PLos One. 2018;13(8):e0201540 https://doi:10.1371/journal.pone.0201540

Lei F, Zhang XN, Wang W, Xing DM, Xie WD, Su H, et al. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes. 2007;31(6):1023-9. https://doi:10.1038/ sj.ijo.0803502

Bragg F, Tang K, Guo Y, Iona A, Du H, Holmes MV, et al. China Kadoorie Biobank (CKB) Collaborative Group. Associations of General and Central Adiposity with Incident Diabetes in Chinese Men and Women. Diabetes Care. 2018;41(3):494-502. https://doi:10.2337/dc17-1852

Chen P, Hou X, Hu G, Wei L, Jiao L, Wang H, et al. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes? Cardiovasc Diabetol. 2018;26;17(1):93. https://doi:10.1186/s12933-018-0734-8

Stokes A, Preston SH. The contribution of rising adiposity to the increasing prevalence of diabetes in the United States. Prev Med. 2017;101:91-5. https://doi:10.1016/j.ypmed.2017.05.031

Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig. 2018;16;33(2). https://doi:10.1515/hmbci-2018-0012

Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365-71. https://doi:10.14348/molcells.2014.0074

Seijkens T, Kusters P, Chatzigeorgiou A, Chavakis T, Lutgens E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes. 2014;63(12):3982-91. https://doi:10.2337/db14-0272

Publicado

2023-11-21

Cómo citar

CRUVINEL, B. A. C., ALVES, A. G. P., SCHINCAGLIA, R. M., & SILVA, M. S. (2023). Baru nuts reduce abdominal adiposity in type 2 diabetic adults: a randomized, placebo-controlled, crossover trial. Revista De Nutrição, 36. Recuperado a partir de https://puccampinas.emnuvens.com.br/nutricao/article/view/10455

Número

Sección

ARTIGOS ORIGINAIS