Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health

Autores/as

Palabras clave:

Antioxidant, Arecaceae, Fatty acids

Resumen

Objective
The presence of dietary bioactive compounds in the human diet becomes a major factor in combating the etiology of different pathologies. Thus, the aim of this investigation was to evaluate the fatty acids profile, cardiovascular functionality indices, bioactive compounds and spectroscopic pattern of peach palm oil (pupunha oil) and their impact on human health.
Methods
The oil was obtained by soxhlet extraction; the oil yield and qualities were determined according to the standards of the Association of Official Analytical Chemists. For the fatty acids profile, the practical recommendations of the American Oil Chemists’ Society and of the International Organization for Standardization were followed. Total carotenoids and polyphenols were determined by spectrophotometry; the composition of the chemical groups was determined by infrared spectroscopy. The anti-atherogenic, antithrombogenic and hypocholesterolemic indices were obtained using mathematical models.
Results
The results showed good quality oil based on acid and peroxyde indices (2.45±0.33mg KOH g-1 and 5.47±1.05mEqkg-1). The main fruit bioactive compound was β-carotene (832.4±0.64µg/100g). The chromatographic profile showed a high saturated fatty acid content (53.74%); unsaturated (46.25%); fats were monounsaturated (39.66%) and polyunsaturated (6.59%). The antiatherogenic, antithrombogenic and hypocholesterolemic indices were, on average, 1.10, 2.04 and 0.84, respectively. The spectroscopic profile exhibited bands with variation from 2918.8cm-1 to 714cm-1.
Conclusion
The results indicate that the consumption of isolated lipid content of the pupunha palm oil provides health protection with emphasis on the prevention of cardiovascular diseases.

Citas

Moura RS, Resende AC. Cardiovascular and metabolic effects of açaí, an Amazon plant. J Cardiovasc Pharmacol. 2016;68(1):19-26. http://dx.doi.org/10.1097/FJC.0000000000000347

Paz SM, Bermudez B, Cardelo MP, Lopez S, Abia R, Muriana FJG. Olive oil and postprandial hyperlipidemia: implications for atherosclerosis and metabolic syndrome. Food Funct. 2016;7:4734-44. http://dx.doi.org/10.1039/C6FO01422D

Fathi-Achachlouei B, Damirchi, SA, Zahedi Y, Shaddel, R. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind Crops Prod. 2019;128:527-33. http://dx.doi.org/10.1016/j.indcrop.2018.11.034

Santos OV, Carvalho RN, Costa CEF, Lannes SCS. Chemical, chromatographic-functional, thermogravimetric-differential and spectroscopic parameters of the sapucaia oil obtained by different extraction methods. Ind Crops Prod. 2019;132:487-96. http://dx.doi.org/10.1016/j.indcrop.2019.02.043

Pinto RHH, Sena C, Santos OV, Costa WA, Rodrigues AMC, Carvalho Junior RN. Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity. Grasas Aceites. 2018;69(2):1-8. http://dx.doi.org/10.3989/gya.0883171

Costa BET, Santos OV, Corrêa NCF, França LF. Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Sci Technol. 2016;36:322-8. http://dx.doi.org/10.1590/1678-457x.0094

Borges CV. Avaliações biométricas de caracteres agronômicos em progênies de pupunheira (Bactris gasipaes Kunth.) [tese]. Amazonas: Universidade Federal do Amazonas; 2016.

Neri-Numa IA, Sancho RAS, Pereira APA, Pastore GM. Small Brazilian wild fruits: nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int. 2018;103:345-36. http://dx.doi.org/10.1016/j.foodres.2017.10.053

Franco TS, Potulski DC, Viana LC, Forville E, Andrade AS, Muniz GIB. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes Kunth). Carbohydr Polym. 2019;218:8-19. http://dx.doi.org/10.1016/j.carpol.2019.04.035

Association of Official Analytical Chemists. Official methods of analysis. 20th ed. Maryland (DC): Association; 2016.

American Oil Chemists’ Society. Cd 3d-63, Cd 8-53: official methods and recommended practices of the American Oil Chemists’ Society. 5th ed. Illinois: Society; 1998.

International Organization for Standardization. 5509: animal and vegetable fats: and oils preparation of methyl esters of fatty acids. Vernier: Organization; 1978.

American Oil Chemists Society. Ce 1-62: official methods and recommended practices of the American Oil Chemists’ Society. 7th ed. Illinois: Society; 2010.

Ulbricht TLV, Southgate DAT. Coronary heart disease: seven dietary factors. Lancet. 1991;338(8773):985-92. http://dx.doi.org/10.1016/0140-6736(91)91846-M

Santos-Silva J, Bessa RJB, Santos-Silva F. Effect of genotype, feeding system and slaughter weigt on the quality of light lambs: II fatty acid composition of meat. Livest Sci. 2002;77(2/3):187-94. http://dx.doi.org/10.1016/S0301-6226(02)00059-3

Ali Akbarian B, Casazza AA, Perego P. Valorization of olive oil solid waste using high pressure-high temperature reactor. Food Chem. 2011;128:704-10. http://dx.doi.org/10.1016/j.foodchem.2011.03.092

Rodriguez-Amaya DB. A guide to carotenoid analysis in foods. Washington (DC): International Life Sciences Institute; 2001.

Institute of Medicine. Food and nutrition board, standing committee on the scientific evaluation of dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Cromium, Copper, Iodine, Iron, Manganese, Molybdenium, Nickel, Silicon, Vanadium and Zinc. Washington (DC): National Academy Press; 2001. [cited 2018 Nov 17]. Available from: https://www.nap.edu/read/10026/chapter/1

Chen Y, Huang B, He, J, Han L, Zhan Y, Wang Y. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita. J Ethnopharmacol. 2011;136(2):309-15. http://dx.doi.org/10.1016/j.jep.2011.04.05820. Statistica for Windows. Version 7.0 [software]. Tulsa: StatSoft, 2000.

Santos RC, Chagas EA, Filho AAM, Takahashid JA, Montero IF, Santos GF, et al. Chemical characterization of oils and fats from amazonian fruits by 1H NMR. Chem Eng Trans. 2018;64(1):235-40. http://dx.doi.org/10.3303/CET1864040

Agência Nacional de Vigilância Sanitária (Brasil). Resolução RDC nº 270, de 22 de setembro de 2005. Dispõe sobre regulamento técnico para óleos vegetais. Brasília: Agência; 2005 [cited 2019 Jan 23]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0270_22_09_2005.html

Food and Agriculture Organization. Norma para los aceites de oliva y aceites de orujo de oliva. Geneva: Organization; 1985. [cited 2019 Feb 26]. Available from: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B33-1981%252FCXS_033s.pdf

Serra JL, Rodrigues AMC, Freitas RA, Meirelles AJA, Darnet SV, Silva LHM. Alternative sources of oils and fats from Amazonian plants: fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res Int. 2018;116(1):12-19. http://dx.doi.org/10.1016/j.foodres.2018.12.028

Santos OV, Gonçalves BS, Macêdo CS, Conceição LRV, Costa CEF, Monteiro Júnior OV, et al. Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of Patauá oil (Oenocarpus bataua). Food Sci Technol. Ahead of print, 2019:1-7. http://dx.doi.org/10.1590/fst.01619

Forero-Doria O, Gallego J, Valdes O, Topal CP, Santos LS, Guzmán L. Relationship between oxidative stability and antioxidant activity of oil extracted from the peel of Mauritia flexuosa fruits. J Therm Anal Calorim. 2015;123(3):2173-8. http://dx.doi.org/10.1007/s10973-015-4822-7

Souza ALG, Ferreira MCR, Miranda LR. Silvino RCAS, Lorenzo ND, Correa NCF, Santos et al. Aproveitamento nutricional e tecnológico dos frutos da castanhola (Terminalia catappa Linn.). Rev Pan Amaz Saude. 2016;7(13):23-9. http://dx.doi.org/10.5123/S2176-62232016000300003

Barros PAV, Glória MBA, Lopes FCF, Gama MAS, Souza SM, Mourthé MHF, et al. Qualidade nutricional e estabilidade oxidativa de manteigas produzidas do leite de vacas alimentadas com cana-de-açúcar suplementada com óleo de girassol. Arq Bras Med Vet Zootec. 2013;65(5):1545-53. http://dx.doi.org/10.1590/S0102-09352013000500036

Singh TC. Avaliação dos parâmetros físico-químicos e estabilidade de compostos bioativos em óleos de polpa e amêndoa de frutos amazônicos [tese]. São Paulo: Universidade Estadual Paulista Julio de Mesquita Filho; 2015.

Rojas-Garbanzo C, Pérez AM, Vaillant F, Castro MLP. Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes Kunth) fruits in Costa Rica. Braz J Food Technol. 2016;19:e2015097. http://dx.doi.org/10.1590/1981-6723.9715

Giuntini EB. Alimentos funcionais. Londrina: Editora e Distribuidora Educacional; 2018.

World Health Organization. Political declaration of the high-level meeting of the general assembly on the prevention and control of non-communicable diseases. In: Sixty-sixth session of the United Nations general assembly, Sept 2011, New York. Resolution 66/2. New York: United Nations; 2011 [cited 2019 Jan 23]. Available from: http://www.who.int/nmh/events/un_ncd_summit2011/political_declaration_en.pdf?ua=1

Agência Nacional de Vigilância Sanitária (Brasil). Resolução RDC nº 269, de 22 de setembro de 2005. Dispõe sobre regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais. Brasília: Agência; 2005 [citado 2019 Jan 23]. Available from: http://portal.anvisa.gov.br/documents/33916/394219/RDC_269_2005.pdf/2e95553c-a482-45c3-bdd1-f96162d607b3

Matos KAN, Lima DP, Barbosa APP, Mercadante AZ, Chisté, RC. Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food chem. 2019;272(1):216-21. http://dx.doi.org/10.21930/rcta.vol18_num3_art:747

Moreira WKO, Oliveira SS, Reis JS, Paraense LRC, Guimarães AT, Silva RTL. Análise de correlação em frutos da pupunha (Bactris gasipaes Kunth). Global Sci technol. 2016;9(3):106-15.

Hempel J, Amrehn E, Quesada S, Esquivel P, Jiménez VM, Heller A, et al. Lipid-dissolved c-carotene, b-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits. Planta. 2014;240(1):1037-50. http://dx.doi.org/10.1007/s00425-014-2121-3

Santos MFG, Alves RE, Roca M. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas Aceites. 2015;66(3)1-8. http://dx.doi.org/10.3989/gya.1062142

Descargas

Publicado

2022-12-02

Cómo citar

Vasconcelos dos SANTOS, O. ., Dias SOARES, S. ., Sodré DIAS, P. C. ., de Paula de Almeida DUARTE, S. ., Lima dos SANTOS, M. P. ., & das Chagas Alves do NASCIMENTO, F. . (2022). Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista De Nutrição, 34, 1–12. Recuperado a partir de https://puccampinas.emnuvens.com.br/nutricao/article/view/7181

Número

Sección

ARTIGOS ORIGINAIS