Polymorphism in the SIRT1 gene and parameters of metabolic syndrome in a sample of the adult Brazilian population
Palabras clave:
Body mass index, Metabolic syndrome, Obesity, Polymorphism, single nucleotide, Sirtuin 1Resumen
Objective
To evaluate whether the single nucleotide polymorphism rs7895833 (A/G) of the gene SIRT1 is associated with metabolic syndrome criteria in a sample of Brazilian adults.
Methods
Serum samples and oral mucosal cells were collected from 243 subjects aged 30 to 70 years. Biochemical, hormonal, and anthropometric data were obtained. The single nucleotide polymorphism rs7895833 (A/G) was analyzed by polymerase chain reaction using the amplification refractory mutation system.
Results
Among the 243 study subjects, 100 (41.15%) were classified as non-metabolic syndrome and 143 (58.85%), as metabolic syndrome. The frequency of the single nucleotide polymorphism rs7895833 (A/G) did not differ between the groups. However, 111 patients (45.67%) were overweight (body mass index: 25-29.9 kg/m2).Blood glucose, total cholesterol, triglycerides, very low density lipoprotein, low density lipoprotein, waist an hip circumferences, and blood pressure were higher in the metabolic syndrome group than in the non-metabolic syndrome group. Free thyroxine 4, grown hormone, and insulin levels were within the normal range. The
metabolic conditions of the patients with metabolic syndrome indicate biochemical, anthropometric, and hormonal changes characteristic of overweight and obesity.
Conclusion
The SIRT1 polymorphism rs7895833 (A/G) is not associated with the metabolic syndrome in the adult Brazilian population.
Citas
Ipadeola A, Adeleye JO. The metabolic syndrome and accurate cardiovascular risk prediction in persons with type
diabetes Mellitus. Diabetes Metab Syndr. 2015; pii: S1871-4021(15)00078-8. http://dx.doi.org/10.1016/j.dsx.2015.08.0112. National Heart, Lung and Blood Institute. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evolution and treatment of high blood cholesterol. JAMA. 2005; 285(19):2486-97.
Barzilai N, Bartke A. Biological approaches to mechanistically understand the healthy life Span extension achieved by calorie restriction and modulation of hormones. J Gerontol Biol Sci. 2009; 2(12):187-91. http://dx.doi.org/10.1093/gerona/ gln061
Masoro EJ. Overview of the effects of food restriction. Prog Clin Biol Res. 1989; 287:27-35.
Berner YN, Stern F. Energy restriction controls aging through neuroendocrine signal transduction. Ageing Res Rev. 2004; 3(2):189-98. http://dx.doi.org/10.1016/j.arr.2003.10.004
Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol. 2007; 42(8):709-12. http:// dx.doi.org/10.1016/j.exger.2007.03.009
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008; 22(13):1753-7. http://dx.doi.org/10.1101/gad.1650608
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000; 273(2):793-8. http://dx. doi.org/10.1006/bbrc.2000.3000
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444(7117):337-42. http://dx.doi.org/10.1038/nature05354
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC 1alpha. Cell. 2006; 127(16):1109-22. http://dx.doi. org/10.1016/j.cell.2006.11.013
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado de Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429(6993): 771-6. http://dx.doi.org/10.1038/nature02583
Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS One. 2013; 8(3):e58636. http://dx.doi.org/10.1371/journal.pone.0058636
Dong Y, Guo T, Traurig M, Mason CC, Kobes S, Perez J, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab. 2011; 104(4):661-5. http://dx.doi.org/10.1016/j.ymgme.2011.08.001
Zillikens MC, van Meurs JB, Sijbrands EJ, Rivadeneira F, Dehghan A, van Leeuwen JP, et al. SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin. Free Radic Biol Med. 2009; 46(6):836-41. http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.022
Peeters AV, Beckers S, Verrijken A, Mertens I, Roevens P, Peeters PJ, et al. Association of SIRT1 gene variation with visceral obesity. Hum Genet. 2008; 124(4):431-6. http://dx.doi.org/10.1007/s0 0439-008-0567-8
Weyrich P, Machicao F, Reinhardt J, Machann J, Schick F, Tschritter O, et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention: The TULIP study. BMC Med Genet. 2008; 9:100. http:// dx.doi.org/10.1186/1471-2350-9-100
Pedersen SB, Olholm J, Paulsen SK, Bennetzen MF, Richelsen B. Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int J Obes. 2008; 32(18):1250-5. http://dx.doi.org/10.1038/ijo.2008.78
Shimoyama Y, Suzuki K, Hamajima N, Niwa T. Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese. Transl Res. 2011; 157(6):339-47. http://dx.doi.org/10.1016/j. trsl.2011.02.004
Zillikens MC, Van Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes. 2009; 58(12):2828-34. http://dx.doi.org/10.2337/db09- 0536
Zillikens MC, Van Meurs JB, Rivadeneira F, Hofman A, Oostra BA, Sijbrands EJ, et al. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index. Am J Clin Nutr. 2010; 91(5):1387-93. http://dx.doi.org/10.3945/ ajcn.2009.28627
Organização Mundial de Saúde. Obesidade: preve nindo e controlando a epidemia global. Relatório da Consultoria da OMS. São Paulo: Rocca; 2004.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6):499-502.
Arruda VR, Lima CS, Grignoli CR, de Melo MB, Lorand-Metze I, Alberto FL, et al. Increased risk for acute myeloid leukaemia in individuals with glutathione S-transferase mu1 (GSTM1) and theta1 (GSTT1) gene defects. Eur J Haematol. 2001; 66(6):383-8. http://dx.doi.org/10.1034/j.1600-060 9.2001.066006383.x
Shimoyama Y, Mitsuda Y, Tsuruta Y, Suzuki K, Hamajima N, Niwa T. SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification inJapanese hemodialysis patients. J Ren Nutr. 2012; 22(1):114-9. http://dx.doi.org/10.1053/j.jrn. 2011.10.025
Zarrabeitia MT1, Valero C, Martín-Escudero JC, Olmos JM, Bolado-Carrancio A, de Sande-Nacarino EL. Association study of sirtuin 1 polymorphisms with bone mineral density and body mass index. Arch Med Res. 2012; 43(5):363-8. http://dx.doi.org/10.1016/j.arcmed.2012.06.012
Clark SJ, Falchi M, Olsson B, Jacobson P, Cauchi S, Balkau B. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity. 2012; 20(1):178-85. http://dx.doi.org/10. 1038/oby.2011.200
Figarska SM, Vonk JM, Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS One. 2013; 8(3):e58636. http://dx.doi.org/10.1371/journal. pone.0058636
Yang J, Wang N, Zhu Y, Feng P. Roles of SIRT1 in high glucose-induced endothelial impairment: Association with diabetic atherosclerosis. Arch Med Res. 2011; 42(5):354-60. http://dx.doi.org/10.10 16/j.arcmed.2011.07.005
Botden IP, Zillikens MC, de Rooij SR, Langendonk JG, Danser AH, Sijbrands EJ, et al. Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine. Diabetes Care. 2012; 35(2):424-6. http://dx.doi.org/10.2337/dc1 1-1203
Kilic U, Gok O, Bacaksiz A, Izmirli M, Elibol-Can B, Uysal O. SIRT1 gene polymorphisms affect the protein expression in cardiovascular diseases. PLoS One. 2014; 9:e90428. http://dx.doi.org/10.1371/ journal.pone.0090428
Mateo-Gallego R, Bea AM, Jarauta E, Perez-Ruiz MR, Civeira F. Age and sex influence the relationship between waist circumference and abdominal fat distribution measured by bioelectrical impedance. Nutr Res. 2012; 32(6):466-9. http://dx.doi.org/10. 1016/j.nutres.2012.05.004
Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003; 88(6):2404-11. http://dx.doi.org/10.1210/ jc.2003-030242
Gupta R, Deedwania PC, Gupta A, Rastogi S, Panwar RB, Kothari K. Prevalence of metabolic syndrome in an Indian urban population. Int J Cardiol. 2004; 97(2):257-61. http://dx.doi.org/10. 1016/j.ijcard.2003.11.003
Machado UF, Schaan BD, Seraphim BM. Glucose transporters in the metabolic syndrome. Arq Bras Endocrinol Metab. 2006; 50(2):177-89. http://dx.doi.org/10.1590/S000427302006000200004
Schäfer S, Kantartzis K, Machann J, Venter C, Niess A, Schick F, et al. Lifestyle intervention in individuals with normal versus impaired glucose tolerance. Eur J Clin Invest. 2007; 37(7):535-43.
Johannsson G, Mårin P, Lönn L, Ottosson M, Stenlöf K, Björntorp P, et al. Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. J Clin Endocrinol Metab. 1997; 82(3):727-34. http://dx.doi.org/10.1210/jcem.82.3.3809
Schneider H, Klotsche J, Wittchen H, Stalla G, Schopohl J, Kann P, et al. Effects of growth hormone replacement within the KIMS survey on estimated cardiovascular risk and predictors of risk reduction in patients with growth hormone deficiency. Clin Endocrinol. 2011; 75(6):825-30. http://dx.doi.org/ 0.1111/j.1365-2265.2011.04137.x
Nagasaki K, Tsumanuma I, Yoneoka Y, Jinguji S, Ogawa Y, Kikuchi T, et al. Metabolic effects of growth hormone replacement in two pediatric patients with growth without growth hormone. Endocr J. 2010; 57(9):771-5. http://doi.org/10.15 07/endocrj.K10E-180
Arafat AM, Möhlig M, Weickert MO, Schöfl C, Spranger J, Pfeiffer AF. Improved insulin sensitivity, preserved beta cell function and improved whole body glucose metabolism after low-dose growth hormone replacement therapy in adults with severe growth hormone deficiency: A pilot study. Diabetologia. 2010; 53(7):1304-13. http://doi.org/ 10.1007/s00125-010-1738-4
Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am. 2002; 3(1):173-89.
Kumar HK, Yadav RK, Prajapati J, Reddy CV, Raghunath M, Modi KD. Association between thyroid hormones, insulin resistance, and metabolic syndrome. Saudi Med J. 2009; 30(7):907-11.
Estivalet AA, Leiria LB, Dora JM, Rheinheimer J, Bouças AP, Maia AL, et al. D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients. Obesity. 2011; 19(4):825-32. http://doi.org/10.10 38/oby.2010.231
Nagai N, Sakane N, Kotani K, Hamada T, Tsuzaki K, Moritani T. Uncoupling protein 1 gene -3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women. Nutr Res. 2011; 31(4):255-61. http://doi. org/10.1016/j.nutres.2011.03.010
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Marina Veloso de Oliveira MENEGUETTE, Camila Andréa de OLIVEIRA, Maria Helena de Melo LIMA, Kathleen Nicole PINA, Maria Esméria Corezola do AMARAL
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.